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ABSTRACT

Superpeer networks are formed and maintained as a result of several node

and link dynamics like bootstrapping, peer churn, attack, link rewiring etc.

Significant amount of work has been done by the p2p research community

in the development of efficient bootstrapping protocols. However, it is not

obvious why bootstrapping of nodes and different local dynamics lead to the

emergence of bimodal superpeer networks. Stability of superpeer networks

also suffers from high rate of peer churn and attacks. The movements of

the peers often partition the network into smaller fragments which results

in breakdown of communication among peers. Although several attacks and

defence techniques are discussed in the literature, less attention has been paid

to assess the impact of such attacks upon the overall topology of the superpeer

network. Hence, apart from the simulation and experimental study, there is

a need for understanding the emergence and resilience of superpeer networks

from a theoretical perspective.

In this thesis, we propose theoretical frameworks to analyze the resilience

and emergence of superpeer networks against several node and link dynam-

ics. In resilience analysis, we model the network topology and peer dynamics

with the help of probability distributions and derive a critical condition for

the stability of superpeer networks. The results obtained from the theoretical

analysis are validated through simulation. We simulate attacks and failures on

real world commercial p2p networks namely Gnutella as well as on the super-
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peer networks generated using theoretical degree distribution. The influence

of network size as well as degree-degree correlation present in the real world

networks (Gnutella) are also analyzed.

In order to understand the emergence of superpeer networks, we model

bootstrapping protocol through a node attachment rule, where the probabil-

ity of joining of an incoming peer to an online node is proportional to the

node property (shared resource, processing power, bandwidth) and degree of

the online node. We develop a formalism that calculates the degree distribu-

tion of emerging superpeer networks based upon such bootstrapping process

and bandwidth constraint. We further refine the above growth framework

and include dynamics like (a) peer churn and (b) link rewiring along with

the bootstrapping process. The analytical framework calculates the threshold

churn rate, required to break down the superpeer structure. It also discovers

that in presence of proper rewiring, the QoS of p2p network shows graceful

degradation in face of churn. Our theoretical model provides some empiri-

cal estimation of churn and rewiring rate of the Gnutella network which is

consistent with the measurement studies.

In summary, the network resilience and other topological properties like

diameter, amount of superpeers in the network, size of the largest connected

component etc. play the key role on the performance of the evolving superpeer

networks. We believe that proper analytical understanding will help network

engineers in regulating these topological properties and subsequently improve

the performance of various p2p services.

Keywords: Superpeer network, network resilience, peer dynamics, complex

networks, degree distribution, giant component, generating function, network

growth, bootstrapping protocols, preferential attachment.
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Chapter 1

Introduction

Peer-to-peer (p2p) paradigm for building distributed systems is becoming extremely

popular as more and more novel applications (like VoIP, Instant Messaging, file shar-

ing etc) are invented and successfully deployed [69]. Peer-to-peer system provides

an architectural paradigm where every node performs both the role of server and

client [27,58]. They exchange information and services directly with each other with-

out any hierarchical organization or centralized control. The main advantage of the

p2p paradigm is that it allows the construction of systems of unprecedented size and

robustness since all clients provide resources, including bandwidth, storage space, and

computing power. Thus, as nodes arrive and demand on the system increases, the

total capacity of the system also increases simultaneously. This is not true for a tradi-

tional client-server architecture, in which adding more clients could mean slower data

transfer for all users. Because of these desirable qualities, many researchers have fo-

cused on understanding the issues surrounding the p2p networks and improving their

performance.

Peers in the peer-to-peer networks are typically connected via ad hoc overlay con-

nections. If a participating peer knows the location of another peer in the network,

then a logical link may be established from the former node to the latter. The logi-

cal links among the peer nodes form the overlay network over the physical topology.

The nature of connection of this overlay network determines whether p2p system is

centralized, structured, or purely decentralized. Each such class of p2p systems has

1



2 Chapter 1 Introduction

its own pros and cons.

The biggest advantage of pure decentralized p2p system (where peers randomly con-

nect each other in a self organizing manner) is its robustness. However functions

upon such system tend to be inefficient; for example, search in pure p2p networks

amounts to flooding the network with query messages. The flooding mechanism gen-

erates large number of redundant query packets in the network which misutilizes the

valuable bandwidth and makes the unstructured P2P systems being far from scal-

able. Superpeer network has proved to be the solution to such problem as it can

combine the efficiency of client-server architecture with the autonomy, load balanc-

ing provided by the pure p2p networks. Hence, superpeer networks have emerged

as the most dominant topology among the unstructured p2p networks. Most of the

commercial systems like KaZaA, Skype use superpeer networks as the underlying ar-

chitecture. In these systems, nodes are selected as superpeers on the basis of their

larger capacity and greater capabilities from among the set of peers. Superpeer nodes

containing higher bandwidth (hence connectivity) and resource connect to each other

forming the upper level in the network hierarchy. Each superpeer works as a server on

behalf of a set of client peers who form the lower level of network hierarchy [139,170].

Superpeer nodes route messages over the upper level of overlay network, and submit

and answer queries on behalf of the pure peers and themselves. Hence, most of the

query traffic flows through the superpeer layer (upper level) which in effect reduces

the bandwidth consumption of the overall networks.

1.1 Formation and Dynamics of superpeer networks

The superpeer networks are formed and maintained as a result of several node and

link dynamics like bootstrapping, peer churn, attack, link rewiring, upgradation of

the peers to the superpeers etc. All these dynamics have a significant impact on the

network topology as well as on the QoS of different p2p services like efficient search,

file downloading etc. A brief description of these dynamics is given below. The de-

tailed survey appears in Chapter 2.

Bootstrapping: The superpeer networks like Gnutella are formed mainly as a re-
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sult of the bootstrapping protocols executed by peer servents like Limewire, Mutella,

Gtk-Gnutella and Gnucleus. To join the network, incoming peers execute bootstrap-

ping protocol through peer servents in which they discover other on-line peers in the

network and send connection requests to them [34]. Bootstrapping protocols exploit

physical properties of the online peers like resource content, processing power, stor-

age space, connectivity etc. The protocols also take the finiteness of bandwidth of

each online peer into consideration. At the time of joining, the incoming peer gets

the list of online peers from web cache servers which are the distributed repositories

for maintaining the information of ‘good’ online peers in the network [82]. These

initial neighbor peers determine the new peer’s location in the overall topology, and

consequently its search and download performance. Hence, peers try (prefer) to join

to ‘good’ (resourceful) nodes; all existing bootstrapping protocols are essentially di-

rected towards fulfilling this basic objective [62,104].

Peer churn and attacks: In superpeer networks, a peer joins the system when a

user starts the servent, uses available resources of other peers (e.g., CPU, storage,

bandwidth) while offering its own resources, and leaves the system when the user ex-

its the application at some arbitrary later point in time. The independent arrival and

departure by thousands or millions of peers create the collective effect of peer churn.

Churn significantly affects both the design and evaluation of P2P systems, overlay

structure [159] and the resiliency of the overlay [158]. In addition to that, important

peers are also targeted for attack [138, 145]. Denial Of Service (DoS) attack [138]

drown important peers in fastidious computation so that they fail to provide any

service requested by other peers. Attackers mount more powerful attacks by lever-

aging the resources of multiple peers; these attacks are known as distributed denial

of service (DDoS) attack [136]. Eclipse attack, Sybil attack, worm propagation, file

poisoning, file pollution [26,145] are some of the important attacks that also affect the

connectivity of the p2p networks. In summary, these peer churn and attacks cause

serious threat to network resilience1 as they have the potential of breaking down the

connectivity among the peers in the network.

Link rewiring: Link rewiring is another internal dynamics that frequently occurs

within the p2p networks. The peer node often disconnects the existing connection

1In this thesis, we do not differentiate between the terms stability and resilience. They are

therefore used interchangeably.
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with its neighboring nodes and establishes new connections with other ‘good’ online

peers in the network. This rewiring operations, executed by peer servent, improve

QoS of different p2p services by keeping ‘resourceful’ nodes as neighbors and play a

major role in maintaining connectivity among the peer nodes specially in the chal-

lenged environment of churn and attack.

In summary, peer dynamics (churn and attack) disrupt the connectivity among

the nodes, hence affect the stability of superpeer networks. In addition, bootstrapping

and link rewiring play a major role in the formation and maintenance of the superpeer

topology. The performance of network is affected by several topological parameters

like amount of superpeer nodes, network connectivity, diameter etc. Hence, proper

understanding of all these dynamics and their influence on various topological param-

eters will help in shaping the QoS of different p2p services.

1.2 Challenges in p2p networks and limitations of

the classical approach

Significant amount of work has been done by the p2p research community in the

development of efficient bootstrapping protocols [31, 62, 78, 130, 156, 169]. Several

of these protocols assume the presence of a centralized bootstrap server [81] later

modified to function just in presence of distributed GWebCache [34, 82, 146]. In

addition, several random address probe based [31,61] and locality aware bootstrapping

protocols [34] are developed to minimize the bootstrapping time and to reduce the

redundant traffic in the underlay topology. Most of the works done in this field are

directed towards designing of bootstrapping protocols to improve the performance of

the p2p services. Such ad hoc improvements seem to have limited utility compared to

the overhead they incur. Side by side, it is not obvious why bootstrapping of nodes

and other local dynamics lead to the emergence of bimodal network, which appear in

superpeer networks like Gnutella. It is interesting to note that these activities (joining,

churn, rewiring) are completely driven by individual peer servents who perform them

to optimize their own quality of service oblivious of the performance of the entire
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network. Hence, there is no explicit effort by either Gnutella client or server program

towards formation of superpeer topology. The performance of the superpeer networks

heavily depends upon the topological properties of the emerging networks [20,139,144,

170]. This includes the network diameter, amount of superpeers in the network, peer-

superpeer ratio etc. Hence, regulating these topological properties and subsequently

improving the performance of various p2p services will prove to be an useful step for

p2p research community. Due to its decentralized nature of formation, controlling

the topological structure of the superpeer network is not a trivial task. However,

to the best of our knowledge, little work has been done to calculate these network

parameters that emerge through the bootstrapping, churn and rewiring processes.

Hence a considerable amount of research need to be directed towards modeling node

and link dynamics and analytically understanding their exact impact on the topology

of the emerging superpeer networks. Proper understanding of the various node and

link dynamics and their impact on the emergence of superpeer networks may provide

some important insights to the network engineers for improving the quality of various

p2p services.

Peer-to-peer networks also suffer from high rate of peer churn due to the con-

tinuous joining and leaving of the nodes in the network. In addition, stability of

the network can get affected through intentional attacks targeted towards important

peers [138,145]. These dynamics of the peers often partition the network into smaller

fragments which result in breakdown of communication among peers. We find that

although several attacks and defence techniques are discussed in the literature, less

attention have been paid to analyze the impact of such attacks upon the overall

topology of the p2p networks. It is very important to maintain the connectivity of

p2p network in order to sustain the regular p2p activities. Measurement based study

and experimental analysis of resilience of p2p networks have been done by various

researchers [146, 158, 159]. Some simulation based studies have also proposed design

guidelines to construct robust p2p networks [130]. However, apart from simulation

and experiment based study, stability analysis of the peer-to-peer networks also need

to be undertaken from a theoretical perspective. More specifically for superpeer net-

works, design engineers often face the essential questions like, what is a good ratio of

peers to super-peers in the network? How should superpeers connect to each other
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and with regular peers? How different topological parameters may affect the network

stability against various node dynamics? How does size of the network play a role in

determining stability? In summary, we can say that a comprehensive theory for un-

derstanding the stability of finite sized networks under any type of node disturbance

is desirable. In this thesis, we try to address some aspects of these issues related to

the stability and emergence of superpeer networks.

1.2.1 Complex network as a toolbox

The commercial peer-to-peer networks are quite large in size and contain millions of

nodes. As discussed in the previous section, these large scale p2p networks are formed

and maintained as a result of various node and link dynamics. P2p networks at any

instant of time can be viewed as very large scale dynamic graph. However, it is dif-

ficult to apply traditional graph theoretic approaches for analyzing the properties of

such large scale networks which are in a constant state of flux. Hence, the behavior of

these systems can only be analyzed by observing various statistical properties of the

network especially by applying the theories of network science. Large scale dynamic

networks are found in various fields of study like sociology (social network, friendship

network, film actors network), biology (protein-protein interaction network, metabolic

network), linguistics (word co-occurrence network), information science (citation net-

work), electrical technology (power grid, electronic circuits), computer science (inter-

net, world wide web network) etc. Network theoretic approaches are widely used in

analyzing these social, biological, and technological networks which display non-trivial

topological features like heavy tail in the degree distribution, a high clustering co-

efficient, assortativity or disassortativity among vertices, community structure, and

hierarchical structure. Large scale p2p networks can also be modeled as complex

graphs and various theories related to network science may be applied in analyzing

the behavior of p2p networks. Significant amount of work has been done in the field of

complex networks in understanding the growth of complex networks in face of various

node dynamics [11, 16, 18, 45, 87]. The basic assumption of all these works has been

that a node joins the network based on preferential attachment, that is a new node

generally attach itself to ‘important’ existing nodes. It has been widely seen that such
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behavior leads to the emergence of scale free or power law networks. The theoretical

analysis of the formation and dissolution of giant component against random failures

and attacks in large scale networks are mostly based upon the percolation theory and

are discussed in [9, 28,29,127].

In this thesis, we utilize various concepts of complex network theory like percola-

tion theory, continuum theory, etc and suitably modify them to analyze the dynamics

of superpeer networks. The main contribution of the thesis is two folds;

1. Analyzing the stability of arbitrary size superpeer networks in face of peer churn

and attacks,

2. Formal understanding of the emergence of superpeer networks in face of various

local events like churn, link rewiring etc.

1.2.2 Objectives of the thesis

The principal objective of the thesis is to develop analytical frameworks for under-

standing the various dynamics in large scale dynamic superpeer networks. We pri-

marily focus on two major topological properties, namely resilience and emergence of

superpeer networks. Specific problems are :

• Development of an analytical framework to measure network stability against

node dynamics like peer churn and attack.

One of the main objectives of this thesis is to build up a complete analytical

framework whereby given a topology and an attack scenario, one should be

able to predict the exact point of breakdown of the network. Such a frame-

work should also be able to explain the observed topological characteristics of

superpeer networks. The effect of peer-superpeer degrees (and their respective

fractions) on the network stability need to be illustrated. The network gets de-

formed after removal of a fraction of nodes along with their adjacent links due

to node dynamics. The developed framework need to also precisely describe the

topology of the deformed network after churn or attacks.
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• Modeling bootstrapping protocols as node attachment rules and formally ex-

plaining the emergence of superpeer networks.

Node attachment rules may be influenced by factors like shared resources, pro-

cessing power, bandwidth etc. These abstract parameters need to be quanti-

tatively represented and their impact on the topological properties of the su-

perpeer networks need to be analyzed through such a growth framework. The

framework should also be able to illustrate the impact of peer churn and rewiring

on the network properties like amount of superpeer nodes, network connectivity,

component sizes, network diameter etc. All these parameters have significant

influence upon the quality of different p2p services. Hence the final objective

of this thesis is to build up a comprehensive framework encompassing growth,

node churn and link rewiring.

Keeping these above broad objectives in mind, the particular work done is outlined

in the next section.

1.3 Contribution of the thesis

In this thesis, we develop theoretical frameworks to analyze the resilience and emer-

gence of superpeer networks against several node and link dynamics. These frame-

works are validated through simulation as well as real world data of Gnutella. We

also discover several nonintuitive, interesting properties related to network topology

that may be useful to the network researchers to improve the performance of the p2p

services. The specific contributions are given below.

• Stability analysis against peer churn and attacks

We model the superpeer networks with the help of degree distribution pk (prob-

ability of a node of degree k) and peer dynamics by another probability distri-

bution fk (probability of removal of a node of degree k). We derive a critical

condition for the stability of superpeer networks which undergo node dynam-

ics. The degree distribution of the deformed network after node removal is
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also calculated. The results obtained from the theoretical analysis are validated

through stochastic simulation as well as by real data of Gnutella network. We

measure the impact of fraction of superpeers in the network as well as their

connectivity upon the stability of the network. The influence of network size as

well as degree-degree correlation present in the real world networks like Gnutella

is also analyzed.

• Generalized model of node dynamics

We characterize the node dynamics as the various kinds of node removal pro-

cesses. We view degree dependent attack as a broad class of node removal

process which is able to capture peer churn and attacks. In this node removal

strategy, the probability of removal of a node (fk) having degree k is propor-

tional to kγ. We show that, by varying the attack parameter γ, we can generate

the wide range of node dynamics, from random failure to deterministic attack.

• Emergence of superpeer networks due to bootstrapping

We model bootstrapping protocols through node attachment rules. We show

that a significant class of bootstrapping protocols may be viewed as a node at-

tachment rule where the probability of joining of an incoming peer to an online

node is proportional to the node property (shared resource, processing power,

bandwidth) and degree of the online node. We identify that in p2p networks,

bandwidth of a node is finite which restricts its maximum degree. A node, af-

ter reaching its maximum degree, rejects any further connection requests from

incoming peers. We develop a formalism that calculates the degree distribution

of an emerging superpeer networks based upon such bootstrapping process and

bandwidth constraint. The proposed growth framework reveals that the inter-

play of finite bandwidth with node property plays a key role in the accumulation

of superpeer nodes in the network. As an application study, we show that our

framework, with some modification, can explain the topological configuration

of commercial Gnutella networks.

• Emergence of superpeer networks against peer churn and link rewiring

We refine the above growth framework where emergence of the superpeer net-

works is driven by the (a) joining of incoming nodes (b) random departure of

peers due to peer churn and (c) rewiring of the existing links thereby biasing
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connections towards resourceful peers. The analytical framework calculates a

critical churn rate, upto which the qualitative nature of superpeers is preserved.

It also discovers that in presence of proper rewiring, the QoS of p2p network

shows graceful degradation in face of churn. Our theoretical model provides

some empirical estimation of the node properties, churn and rewiring rate of

the Gnutella network which is consistent with the measurement results.

1.4 Organization of the thesis

The organization of rest of the thesis is as follows. Prior to dealing with the proposed

work, we report a survey on related research topics in Chapter 2. Chapter 3 focuses

on modeling of superpeer networks as well as various node dynamics and analyzes

the stability of superpeer networks against peer churn. In Chapter 4, we analyze

network stability and topological deformation against attacks. Chapter 5 develops a

formal framework to analyze the emergence of superpeer network from bootstrapping

by incoming peers. In Chapter 6, we extend the framework to include peer churn and

link rewiring. Chapter 7 concludes the thesis.



Chapter 2

Literature survey

This thesis builds up an analytical framework to understand the resilience of super-

peer networks against various types of node failures. It also reports a comprehensive

analysis explaining the emergence of superpeer networks. In this context, this chapter

provides an upto date survey of the various works done in the field of network sta-

bility and growth of networks. The organization of the survey is as follows; the first

section covers different kinds of peer-to-peer networks with special emphasis given on

superpeer networks. Second section of the survey reports different disruptive events

in p2p networks like peer churn, attacks and their defence strategies. Further we

review the stability analysis of the large scale networks in the perspective of complex

network theory. The third section discusses the formation of p2p networks through

bootstrapping and other local events like link rewiring. In this perspective, we review

the various theories related to the growth of complex networks.

2.1 Introduction to peer-to-peer networks

Peer-to-peer networks belong to the paradigm of computer networks where each work-

station has equivalent capabilities and responsibilities [27,100]. The main advantage

of the p2p networks is that it allows the construction of systems of unprecedented

11
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size and robustness since all clients provide resources, including bandwidth, storage

space, and computing power. Peers in the p2p networks establish an application

layer connectivity among themselves, which is known as overlay. If a participating

peer knows the address of another peer in the network, then a link may be created

from the former node to the latter in the overlay network. Based on how the nodes

in the overlay network are linked to each other, the current p2p architecture can be

classified into three types [98, 166], centralized, decentralized and structured, decen-

tralized but unstructured.

1. Centralized : In centralized system, a list of index items corresponding to the

shared files in the network is kept in a centralized server in the form of ⟨object-key,
node-address⟩ table. Each arriving node needs to actively notify the centralized server

about the files (objects) it possesses. Therefore the querying node needs to contact

the central server to obtain the peer’s addresses containing its searched object. How-

ever, at the time of downloading the searched object from the peer, the querying

node directly establishes the connection with the concerned peer and download the

item. This type of p2p architecture is very simple, efficient and easily deployable.

But like any centralized system, it has the problem of single point of failure and lacks

scalability. The most popular example of centralized p2p system is Napster [4]. After

it’s inception in May 1999, many record companies realized that the threat Napster

posed to its potential earnings was immense and hence need to be legally challenged.

This court case involved the Recording Industry Association of America (RIAA),

which includes such music industry giants as AOL Time Warner’s Warner Music,

BMG, EMI and Sony Music among others, suing Napster over breach of copyright

law. This forced Napster to shut down the file-sharing service of digital music, which

was literally its killer application.

2. Decentralized and structured : Structured p2p network employs a globally

consistent protocol to ensure that any node can efficiently route a search query to

a peer that has the desired file. Such structured p2p systems use Distributed Hash

Table (DHT) as a substrate, in which data object (or value) location information is

placed deterministically at the peers with identifiers, corresponding to the data ob-

jects unique key [24,98]. DHT-based systems have a property that consistently assign

uniform random NodeIDs to the set of peers into a large space of identifiers. Data ob-

jects are assigned unique identifiers called keys, chosen from the same identifier space.
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Keys are mapped by the overlay network protocol to a unique peer in the overlay net-

work. The p2p overlay networks support scalable storage and retrieval of {key, value}
pairs on the overlay network. Given a key, a store operation (put(key,value)) and re-

trieval operation (value=get(key)) can be invoked respectively to store and retrieve

the data object corresponding to the key, which involves routing requests to the peer

corresponding to the key. Each peer maintains a small routing table consisting of its

neighboring peers NodeIDs and IP addresses. Lookup queries or message routing are

forwarded across overlay paths to peers in a progressive manner, with the NodeIDs

that are closer to the key in the identifier space. Different DHT-based systems have

different organization schemes for the data objects and its key space and routing

strategies. In theory, DHT-based systems can guarantee that any data object can be

located in a small O(logN) overlay hops on average, where N is the number of peers

in the system. Since structured overlays impose rigid topologies on the participating

nodes, they are often very limited in their ability to adapt to the sudden departure of

nodes [92,141]. This leads to comparatively high round trip times within the overlay

and unnecessarily increases the load imposed on the underlay. Hence in structured

p2p network, the network resilience and adaptability is compromised at the cost of

search efficiency. Some well known DHTs are Chord, Pastry, Tapestry, CAN, and

Tulip [98].

3. Decentralized and unstructured : An unstructured p2p system is composed

of peers joining the network using some defined rules, without any prior knowledge of

the topology. As no special network structure needs to be maintained, unstructured

p2p systems are extremely resilient to peer churn. In this category, the overlay net-

works organize peers as random graph in flat or hierarchical manner (e.g. Super-Peers

layer) and use techniques like flooding, random walks or expanding-ring Time-To-Live

(TTL) search etc on the graph to query content stored by overlay peers [6]. Searching

in unstructured networks is often based on flooding or its variation because there is

no control over data storage [100]; data are stored among peers without any specific

rule. During flooding, nodes send query messages across the overlay with a limited

lifetime. When a peer receives the flood query, it sends a list of all contents matching

the query to the originating peer. Since there is no correlation between a peer and

the content managed by it, there is no guarantee that flooding will find a peer that

has the desired data. However, due to the high dynamicity of peers, robustness is
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given the topmost priority. Most of the popular p2p networks such as Gnutella and

FastTrack are unstructured [65] in nature.

2.1.1 Limitations of unstructured systems: motivation be-

hind superpeer networks

Although unstructured p2p systems have many strengths, it also suffers from certain

serious limitations. (a) As previously mentioned, search in pure unstructured p2p

networks amounts to flooding the network with query messages. In this technique,

query packets are propagated to all neighbors within a certain radius until the de-

sired object is found. However, this flooding mechanism generates large number of

redundant query packets in the network which wastes the precious bandwidth and

makes the unstructured p2p systems being far from scalable. (b) In addition, the

search queries may not always be resolved in unstructured p2p networks. Popular

content is likely to be available at several peers but if a peer is looking for rare data

shared by only a few other peers, then it is highly unlikely that search will be suc-

cessful [41]. (c) Another important source of inefficiency is bottlenecks caused by

the very limited capabilities of some peers. In pure p2p networks, all peers are given

equal roles and responsibilities, regardless of their capabilities. One study [163] found

that peers connected by dialup modems become saturated by the increased load; this

leads to a huge departure of these kind of peers, resulting in network fragmentation.

Moreover, studies such as [146] have shown considerable heterogeneity (e.g., up to 3

orders of magnitude difference in bandwidth) among the capabilities of participating

peers. These insights lead to the appearance of superpeer network, which is detailed

next.

Superpeer network:

One of the obvious ways of eliminating the limitations of pure p2p systems is to

take advantage of node heterogeneity, hence assigning greater responsibilities to high

bandwidth, resourceful nodes namely superpeers. Superpeer nodes are selected for

their larger capacity and greater stability from among the set of peers. In superpeer

networks, superpeer nodes connect with each other forming the upper level in the

network hierarchy. Each superpeer works as a server on behalf of the set of pure or
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regular peers who form the lower level of network hierarchy [103, 139, 170]. Super-

peer nodes route messages over the upper level of overlay network, and submit and

answer queries on behalf of the pure peers and themselves. Since superpeers act as

centralized servers to the pure peers, they can handle queries more efficiently than

each individual peer could. However, since there are relatively many superpeers in a

system, no single superpeer has to handle a very large load, nor will one peer become

a bottleneck or single point of failure for the entire system. Hence superpeer networks

have the potential to match the performance and scalability of structured systems,

while retaining the benefits of unstructured p2p systems [76,103,139]. In the follow-

ing section, we illustrate the basic architecture of superpeer networks and report a

brief review on various kinds of superpeer networks proposed in the literature.

2.1.2 Superpeer networks design

Several protocols and design methodologies have been proposed to optimize super-

peer network topologies [59, 60, 85, 139, 170]. Initially, major thrust was given on

the construction of the robust network with proper load balancing and search ef-

ficiency [117, 139, 170]. These works showed that selection of the superpeer nodes,

transformation of peers to superpeers, and the association of peers with some chosen

superpeers play a major role in the network performance. Yao-graph based topolo-

gies also come as an alternative as these approaches offer simple construction rules

and also ensure scalability and performance [85, 99]. In addition to this, connecting

superpeer and peers based upon semantic similarities [59,60] and communicating dis-

tance [79] have proven to be useful to optimize several p2p services like search, file

download latency etc. A brief review on the design of superpeer networks follows.

In [170], Molina et al. presented a set of design guidelines as summarizing the

main tradeoffs in superpeer networks. The network performance is measured based

on two types of metrics, (a) load, and (b) quality of results. They looked at both

individual load (the load of a single node), as well as aggregate load, (the sum of the

loads of all nodes in the system). The quality of results is measured by the number of

results returned per query. They showed that increasing the number of superpeers in
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the network reduces the load of the individual superpeers. However, it increases the

aggregate load in the network by increasing the overall traffic in the superpeer layer of

the overlay, hence a balance need to be struck somewhere. They also discovered that

superpeer redundancy has no significant effect on aggregative performance, however

redundancy does decrease individual super-peer load significantly. They formulated

a general procedure that incorporates these thumb rules and produces an efficient

topology. Finally, they discussed how an individual node without a global view of

the system might make local decisions to form a globally efficient network. In [139],

Pyun et al. proposed a distributed protocol for the construction of a balanced low-

diameter superpeer topology (Scalable Unstructured p2p System) at low cost. SUPS

is an unstructured p2p system in which the interconnections between superpeers are

selected to approximate a random graph. In the proposed network, superpeers are

organized such that the resulting overlay network will have a balanced load and a

logarithmic diameter, with minimum node degree. The protocol is shown to be robust

to (a) rapid changes in the set of superpeers, and (b) failures in the superpeers.

Montresor et al. [117] proposed a mechanism for the construction of robust super-

peer topologies based on the well-known gossip paradigm. Here each node periodically

initiates an information exchange with another peer, selected randomly. Based on this

information, a client may decide to become a superpeer and take responsibility for

some of the clients of the other node, to alleviate its load; alternatively, a superpeer

may decide to move all its clients to the other node and become a client by itself,

to reduce the number of superpeers and thus the traffic generated by communication

between superpeers. The continuous gossiping of topology information captures the

dynamic nature of p2p systems and makes the network information consistent: nodes

may learn about a new node by receiving its identifier in an exchange, while crashed

nodes are progressively forgotten and then removed from the network. Furthermore,

the protocol is also claimed to be efficient as the total number of messages exchanged

among all nodes scale linearly with the size of the network.

Kleis et al. [85] studied the performance of Yao-Graph based superpeer topolo-

gies. Using Yao-Graphs, they achieved a global characteristic of the superpeer topol-

ogy by applying simple local construction algorithm. They claimed that due to the

lightweight structure of Yao-Graphs, the resulting networks have promising proper-
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ties regarding scalability and performance, while still offering the benefits of the p2p

approach with regard to network resiliency. In [79], Gian et al. presented a self-

organizing, decentralized protocol capable of building and maintaining superpeer-

based, proximity-aware overlay topologies. The goal of the protocol is to build a

topology where peers and superpeers are connected based on their distance (measured

by communication latency). The proposed algorithm used gossip-based protocol to

spread messages to nearby nodes and biology-inspired task allocation mechanism to

promote the ‘best’ nodes to superpeer status and to associate them to nearby peers. In

a similar kind of work, Lua et al. [99] designed underlay-aware topologies connecting

all nodes that offer promising properties in terms of excellent communication quality.

They exploited the underlying network locality and proximity of the nodes for overlay

routing and node placement strategy. In this work, Yao-graph based approach has

been used to build the connectivity at superpeer layer; the resulting outcome brings

that, every superpeer getting connected to six closest superpeer neighbors.

Garbacki et al. [59,60] introduced a self-organizing superpeer network architecture

(SOSPNet) that reflects the semantic similarity of peers, sharing contents across the

users of wide variety of interests. SOSPNet uses two-level semantic caches deployed

at both the superpeer and the peer level to maintain relationships between related

peers and files. The cache maintained by a superpeer contains references to those files

which were recently requested by its peers, while the cache of a peer stores references

to those superpeers that satisfied most of its requests. They have shown how this

simple approach can be employed, not only to optimize searching, but also to solve

generally difficult problems encountered in p2p architectures such as load balancing

and fault tolerance.

2.1.3 Networks modeling

Superpeer topology can be represented by a complex graph structure which have

evolved ‘naturally’ and hence it falls under the category of random graphs. In ran-

dom graphs, network topologies are represented by the degree distribution pk which

signifies the probability that a randomly chosen node is of degree k. In other words,
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it represents the fraction of nodes in the network of degree k. There has been several

attempts to represent p2p networks using theoretically well known graphs. Also mea-

surement studies to characterize degree distribution of real world p2p network have

also been made. We provide a brief sketch of both.

Erdos and Renyi graph: In the well-known Erdos and Renyi (E-R) random net-

work [48], every pair of nodes is linked with a probability p. The degree distribution

of this network follows Poisson degree distribution

pk =
⟨k⟩ke−⟨k⟩

k!
(2.1)

The average degree ⟨k⟩ = Np where N is the number of nodes. In E-R graph, pk

peaks at an average ⟨k⟩ and decays exponentially for large k leading to a fairly ho-

mogeneous network, in which each node has approximately the same number of links

k ≃ ⟨k⟩.
Scale-free networks: In contrast, results on the Internet, world-wide web (www) [8]

and other large networks indicate that many systems belong to a class of inhomoge-

neous networks, referred to as scale-free networks, for which pk decays as a power-law,

i.e. pk ∼ k−αek/κ [28] where α and κ are constants. In fact, most of the real world

networks do not exhibit power law behavior at large degrees k; pk falls exponentially

for high k. This is the reason behind including the exponential cutoff ek/κ in the

power law degree distribution. In most cases, the power law exponent varies between

α = 2.15 to 2.3 [146]. While the probability that a node has a very large number

of connections (k >> ⟨k⟩) is practically prohibited in exponential networks, highly

connected nodes are statistically significant in scale-free networks.

Bimodal network: [133] introduced star networks of N nodes with degree distribu-

tion

pk =

{
(N − 1)/N ; k = 1

1/N ; k = N − 1
(2.2)

and pk = 0 for all other values of k. Next, they extended the star network to general

bimodal networks where q high degree hubs connected to the remaining nodes of

degree one. For networks with average degree ⟨k⟩, the degree distribution is specified
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as

pk =

{
(N − q)/N ; k = 1

q/N ; k = k2
(2.3)

where k2 =
(⟨k⟩−1)N+q

q
and pk = 0 for all other k.

Gnutella network: Initial measurement studies confirmed that, degree dis-

tribution of Gnutella network, that continuously expand by the addition of new

nodes through preferential attachment, follows a power-law distribution with expo-

nent α = 2.3 [142, 146]. Further measurement through sophisticated crawlers [143]

have shown that, Gnutella degree distribution follows a multi-modal distribution,

combining a power law and a quasi-constant distribution. The results show that al-

though Gnutella is not a pure power-law network, it preserves good fault tolerance

characteristics while being less dependent than a pure power-law network on highly

connected nodes that are vulnerable to attack. The topological structure of Gnutella

obtained from another measurement study confirms that its degree distribution does

not exactly follow power law distribution [159]. Rather, accumulation of superpeer

nodes [103] shows some modal behavior at the high degree nodes that gives rise to

bimodal degree distribution.

To conclude, we report a very interesting study on mathematical modeling of su-

perpeers in the field of polymer science [19]. This paper investigated how the net-

work topology of an ensemble of telechelic polymers changes with temperature. The

telechelic polymers serve as ‘links’ between ‘nodes’, which consist of aggregates of

their associating end groups. They showed that the degree distribution of this sys-

tem closely resembles superpeer networks and consists of two Poissonian distributions.

They modeled the network as the superposition of two Poisson distributions with dif-

ferent average degree ⟨k⟩. Nodes in the distribution with higher average degree ⟨k⟩SP
are called superpeers and others are peers with low average degree ⟨k⟩P . They showed

that below the ‘micelle transition’, the topology can be described by a robust bimodal

network in which superpeer nodes are linked among themselves and all peer nodes

are linked only to superpeers. At lower temperatures the peers completely disappear

leaving a structure of interconnected superpeers.
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2.2 Dynamics on peer-to-peer networks

In this section, we provide a comprehensive survey on various node dynamics like peer

churn and attacks that occur in p2p networks. The churn and attacks can be modeled

and their impact has been traditionally analyzed using complex network approach; a

detail description of these approaches is described in the next subsections.

2.2.1 Churn in p2p networks

In p2p networks, a peer joins the system when a user executes the peer servent, uses

available resources of other peers (e.g., CPU, storage, bandwidth) while offering up

its own resources, and leaves the system when the user exits the servent at some ar-

bitrary later point in time. One such join-participate-leave cycle may be defined as a

session. Peers may join and leave the system at any arbitrary time. This implies that

(i) peer participation in p2p systems is inherently dynamic, and (ii) these dynamics

are primarily user-driven. The user-driven dynamics of peer participation, or churn,

must be taken into account in both the design and evaluation of any large scale p2p

application. Churn significantly affects both the design and evaluation of p2p sys-

tems, overlay structure [159], the resilience of the overlay [91], and the selection of

key design parameters [92].

Researchers and developers performed several studies on churn in order to understand

its implications on peer-to-peer networks. Next we review peer churn in three differ-

ent perspectives (i) Measurement based studies (ii) Modeling and (iii) Strategies to

minimize the effect of churn

Measurement based study: In [146] Saroiu et al. performed a measurement study

of the two popular peer-to-peer file sharing systems, namely Napster and Gnutella.

The paper found that Gnutella presents a highly robust overlay in the face of ran-

dom breakdowns; the overlay fragments only when more than 60% of the nodes shut

down. Stutzbach et al. [158] made a major contribution towards understanding churn

by conducting deeper analysis and relying on more accurate measurements. They

studied churn in three types of widely-deployed p2p systems: Gnutella, Kad, and

BitTorrent. One of the most basic parameters of churn is the session length distri-
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bution, which captures how long peers remain in the system each time they appear.

Their experimental results showed that while most sessions are short (minutes), some

sessions are very long (days or weeks). The data is better described by Weibull or log-

normal distributions. They also report that the distribution of session lengths does

not significantly change over time. Hence, the measurement of past session length

is a good predictor of the next session length. The availability of individual peers

also exhibits a strong correlation across consecutive days. In [69] Guha et al. pre-

sented the measurement study of the Skype VoIP system. They observed that there

is very little churn in the superpeer layer of the network. Further, they reported that

session lengths are heavy-tailed and are not exponentially distributed. Hence, they

concluded that the population of supernodes in the system tends to be relatively sta-

ble; thus node churn, a significant concern in other systems, seems less problematic

in Skype. In [160], Stutzbach showed that the Gnutella overlay is extremely robust

to random peer removals. For instance, after removing 85% of peers randomly, 90%

of the remaining nodes are still connected. in this case, long-lived superpeers form a

stable and densely connected core overlay (onion-like structure), providing stable and

efficient connectivity among participating peers despite the rapid dynamics of peer

participation.

Modeling: One of the first models of churn was proposed in [130], where arrival of

new nodes follow Poisson distribution with rate λ, and the duration of time a node

stays connected to the network is independently and exponentially distributed with

parameter µ. Leonard et al. [91] examined two aspects of network resilience in

dynamic p2p systems; (a) ability of each user to stay connected to the system in the

presence of frequent churn and (b) partitioning behavior of the entire network. In this

work, ‘resilience’ generally refers to the ability of an user i to stay connected to the

rest of the graph for duration (lifetime) Li while its neighbors are constantly chang-

ing. To examine the behavior of churn, this paper introduced a simple node-failure

model based on user lifetimes and studied the resilience of p2p networks in which

nodes stay online for random periods of time. The results indicated that systems

with heavy-tailed lifetime distributions are more resilient than those with light-tailed

(e.g., exponential) distributions. They further showed that k-regular graphs offer the

highest local resilience among all systems with a given average degree. Yao [171] in-

troduced a generic model of heterogeneous user churn and derived the distribution of
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the various metrics observed in prior experimental studies (e.g., lifetime distribution

of joining users, joint distribution of session time of alive peers, and residual lifetime

of a randomly selected user). In [15] Ranjita et al. studied several characteristics

of host availability in the Overnet peer-to-peer file sharing system, and discussed

the implications of the findings on the design and operation of peer-to-peer systems.

They modeled peer availability by a combination of two time-varying distributions:

(1) short-term daily enter and exit of individual hosts, and (2) long-term host arrivals

and departures.

Strategies to combat churn: In [130] Pandurangan proposed neighbor replace-

ment protocol as a result of lost connections due to peer churn. Analysis showed that

the protocol results in a constant degree network that is likely to stay connected and

have small diameter. Some work has been done on the design of stable distributed

network in a proactive manner [66]. In these networks, churn rate is reduced by in-

telligently connecting the network by a selected set of joining nodes. There are two

different strategies for node selection. First of all, the use of previous information

about nodes to attempt to predict which nodes will be stable. These (Predictive

Fixed) strategies are often used in the deployment of services on PlanetLab, where

developers pick a set of machines and run their applications exclusively on those ma-

chines for days or months. The second strategy (Agnostic Replacement strategy) is

to replace a failed node with a new one. The different strategies followed are (1.)

Random Replacement (RR): replace a failed node with a uniform-random available

node and (2.) Preference List (PL): rank the nodes according to some preference or-

der and pick the top k available nodes. The paper also provided a comparison of the

performance of a range of different node selection strategies using real-world traces.

2.2.2 Attack and defence strategies in p2p networks

Understanding the effect of attacks upon the large scale peer-to-peer networks is

becoming a major challenge for the p2p network community. We report various

attacks and defence techniques that are commonly employed in p2p networks.

The most prominent attack that affects the stability of the network is Denial Of
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Service (DoS) attack [47] which is gradually becoming huge threat to the Internet

community [157]. DoS attack drowns important peers in fastidious computation as

a result of which they fail to provide any service requested by other peers. Alterna-

tively, DoS attack takes an attempt to flood the network with bogus packets, thereby

preventing legitimate network traffic. In addition to that, attackers mount more pow-

erful attacks by leveraging the resources of multiple peers; these attacks are known

as distributed denial of service (DDoS) attack [121,122,136]. The perpetrator in

DDoS attack remotely installs the slave programs in the peers with poor security, and

at the right time instructs thousands of these slave programs to attack a particular

target. DDoS attacks are extremely hard to block, as a malicious user can use an

enormous number and diversity of machines to launch the attack. In addition, as the

attacker is often only indirectly involved, it becomes impossible to identify the source

of the attack. The first problem is detecting a DoS attack as it can be mistaken with

a heavy utilization of the machine. A widely used technique to hinder DoS attacks is

‘pricing’. The host will submit puzzles to his clients before continuing the requested

computation, thus ensuring that the clients go through an equally expensive compu-

tation. If each attempt to flood his victim results in him having to solve a puzzle

beforehand, it becomes more difficult to launch a successful DoS attack.

In Sybil attack [46, 138], an attacker subverts the reputation system of a peer-

to-peer network by creating a large number of pseudonymous entities, using them to

gain a disproportionately large influence. Once the control has been accomplished,

the attacker can abuse the protocol to disconnect the different parts of the network. A

reputation system’s vulnerability to a Sybil attack depends on how cheaply identities

can be generated, the degree to which the reputation system accepts inputs from

entities that do not have a chain of trust, linking them to a trusted entity, and

whether the reputation system treats all entities identically. A good defense is to

render a Sybil attack unattractive by making it impossible to place malicious identities

in strategic positions. Another proposition could be to include the nodes IP address

in its identifier as a malicious node would thus not be able to spoof fake identities.

In summary, carefully configured reputation-based systems might be able to slow the

attack down [46].

In eclipse attack [138,151], attackers gain control over a certain amount of nodes
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along strategic routing paths. Once this is achieved, then it is possible to inefficiently

reroute each message and drop all messages he receives, thus completely separating

both subnetworks. The main defense against eclipse attacks is simply to use a pure

p2p network model [138]. If the nodes in a p2p network are randomly distributed, then

there are no strategic positions and an attacker cannot control his nodes’ positions.

In [152] Singh et al. presented a defense technique against eclipse attacks based on

anonymous auditing of nodes’ neighbor sets. If a node has significantly more links

than the average, it might be mounting an eclipse attack. When all nodes in the

network perform this auditing routinely, attackers are discovered and can be removed

from the neighbor sets of correct nodes. Several defense strategies are discussed in

the literature that require additional constraints on neighbor selection [23,71].

In file poisoning, attackers [26, 94, 95] try to inject useless data (poison) into

the system. The goal of this attack is to replace a file in the network by a false

one. However, when a polluted file is downloaded by an user, it stays available for

a while before being inspected and cleansed. After a period of time, all polluted

files are eventually removed and the authentic files become more abundant than the

corrupted ones.

Cornelli et al. [33] introduced another class of security threat where p2p appli-

cations can be exploited to distribute malicious software, such as viruses and trojan

horses. In fact, shared audio and video files may harbor security threats, as the multi-

media formats permit the introduction of links and active content that may be ex-

ploited to introduce malicious software into a computer [13]. In order to combat the

threat against suspicious shared software and resources, Damiani et al. [37] proposed

defence strategies that uses combined reputations of servents and resources, provid-

ing more informative security strategy. Resource reputations are tightly coupled to

the resources’ content via their digest, thus preventing their forging on the part of

malicious peers.

Another important issue that looms over p2p networks is blocking and throttling

of p2p traffic by the Internet service providers. According to a 2007 Internet study,

69% of Internet traffic in Germany is p2p traffic, with HTTP way behind at 10% [148].

Given the staggering proportion of Internet traffic accounted for by p2p applications,
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it is not surprising that ISPs are starting to block ports on which well-known file

sharing applications run. For example, Comcast recently started to throttle and

drop packets of BitTorrent traffic, effectively blocking its customers from running the

software [153]. Going even further, Ohio University recently started to block all p2p

traffic on its campus [154].

2.2.3 Network stability in the perspective of complex net-

works

Since large scale p2p networks can be modeled as complex graphs, stability analysis

of complex theoretical graphs, simultaneously done by the physicists and mathemati-

cians provide rich input towards understanding the various properties of p2p networks.

In order to analyze the network stability, we need to define proper stability metric.

Hence in this section, we first provide extensive review on stability metric. A review

on the effect of failures and attacks on network stability is elaborated next. Finally

we report the resilience and other related properties of some typical topologies and

real world networks.

Stability metrics

There are various approaches to measure the stability of large scale networks. We

may characterize these stability metrics in two different categories; metrics based on

the (a) change in the topological properties (b) identification of network breakdown

point.

(a) Metrics based on the change in topological properties: To measure

the networks’ error tolerance, Albert et al. [9] studied the changes in the diameter,

largest component size, and average component size when a fraction f of the nodes

are removed. The absence of a node in general increases the distance between the

remaining nodes, as well as the diameter, since it can eliminate some paths that con-

tribute to the system’s interconnectedness [97]. In addition, when nodes are removed
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from the network, clusters of nodes, whose links to the system disappear, can get

detached from the main component. The size of the largest connected component S,

also termed as giant component, can be used as the stability metric, when a fraction

f of the nodes are removed [28]. It has been observed that as the fraction of nodes

removed f increase, S displays a threshold-like behavior such that for f > fc, S be-

comes 0. A similar metric is to monitor the average component size ⟨s⟩ of the isolated
clusters (i.e. all the clusters except the largest one). For small f , only single nodes

break apart, hence ⟨s⟩ ≃ 1. But as f increases, the size of the fragments that fall off

the main cluster increases. At fc the system practically falls apart, the main cluster

breaking into small pieces, leading to S ≃ 0, and the size of the fragments, ⟨s⟩ peaks.
As we continue to remove nodes further (f > fc), these isolated clusters fragment,

leading to a decreasing ⟨s⟩.

In [166], Wanga et al. introduced a new metric namely network efficiency E,

which is based upon the inverse of the shortest distance between nodes, such as

E =
1

N(N − 1)

∑
i̸=j

1

dij
(2.4)

High efficiency network means that pairs of nodes are on average close to each other.

This is very similar to the average distance but allows to consider disconnected net-

works. In a similar fashion, [132] introduced the Diameter-Inverse-K (DIK) measure

defined as d
K
, where d is the average distance between pairs of connected nodes, and

K is the fraction of pairs of nodes which are connected. This measure can identify

the amount of disconnectedness as well as can differentiate between connected graphs

having short or large average node distances.

Recently, a new measure of fragmentation has been developed in social network

studies [25]. Suppose a fully connected network of N nodes is fragmented into m

separate clusters by removal of nodes. The degree of fragmentation F of the network

is defined as the ratio between the number of pairs of nodes that are not connected in

the fragmented network to the possible number of pairs in the original fully connected

network. Suppose there are m clusters in the fragmented network; since all members

of a cluster are, by definition, mutually reachable, the measure F can be written as
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follows

F = 1−
∑m

j=1Nj(Nj − 1)

(N(N − 1))
= 1− C (2.5)

Here, Nj is the number of nodes in cluster j, and N the number of nodes in the

original fully connected network. For an undamaged network, F = 0. For a totally

fragmented network, F = 1. The quantity C can be regarded as the “connectivity”

of the network. In this paper, Chen et al. studied the statistical behavior of F (≡ C)

using both analytical and numerical methods and relate it to the traditional measure,

the relative size of the giant component S, used in percolation theory.

(b.) Metrics based on the identification of network breakdown point :

The stability of networks is also measured in terms of a certain fraction of nodes called

percolation threshold [14,22,101,134] removal of which breaks down the network into

large number of small, disconnected components. Below that threshold, there exists

a giant component which spans the entire network. The critical condition for the

formation of the giant component in random graphs is described in [115,116]. These

papers of Molloy et al. have theoretically shown that the existence of giant compo-

nent can be mathematically captured by the ratio κ = ⟨k2⟩/⟨k⟩ where ⟨k⟩ and ⟨k2⟩
are the first and second moments of the degree distribution respectively; the value of

κ ≥ 2 indicates the situation where stability of the giant component is maintained.

It is important to note that, for a given finite size network, the notion of percolation

threshold does not make sense: the fraction of nodes in the largest connected com-

ponent will never be zero. Hence, we broadly categorize the procedures to calculate

percolation threshold in two different ways

(i) Identifying percolation threshold by observing the topological properties at break-

down point : One may notice that, when the network reaches the threshold point (of

breakdown), the slope of the largest connected component size as a function of the

number of removed nodes goes to zero. In finite-size computation, we may therefore

consider that we reach the percolation threshold when this slope is maximal [22].

In another approach [70, 101], the percolation threshold is detected when the largest

connected component size is less than 5% of the whole network.

(ii) Identifying percolation threshold based on classical theories:

In [134], Paul et al. obtained the percolation threshold from simulation following

the classical theory of giant component. The nodes were deleted in the network (of
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size N) following a specific strategy and after each node removal, they calculated

κ = ⟨k2⟩/⟨k⟩. When κ becomes just less than 2 they recorded the number of nodes

f , removed up to that point. This process is performed for many realizations. The

percolation threshold fc is calculated as

fc =
⟨f⟩
N

(2.6)

In [55], a similar procedure is used to calculate percolation threshold. Here a fraction

of nodes f are successively removed along with the adjacent links. After each removal,

moments of the degree distribution ⟨k2⟩ and ⟨k⟩ are calculated. If κ = ⟨k2⟩/⟨k⟩ > 2,

a giant component spans over the network. This procedure is repeated for a large

number of realizations (typically 100-300). For each fraction f of removed nodes, the

probability F∞, that a spanning cluster does not exist is calculated. The percolation

threshold fc is that value of f at which F∞ crosses 0.5.

In summary, we have illustrated several techniques available in the current litera-

ture to measure the network stability. However, we find that computing percolation

threshold based on the classical theories [55] is the most recent technique and it nicely

captures the theoretical foundation of percolation threshold (κ) in the simulation en-

vironment. Hence in this thesis, we use this versatile technique to measure percolation

threshold during simulation based experiments.

Resilience against failure and attacks:

Albert et al. [9] experimentally addressed the question of random failures and inten-

tional attacks on wide variety of networks. In the case of random failure, nodes are

removed randomly irrespective the degree; however in intentional attack, a fraction of

high degree nodes are removed from the network. Simulation results in [9] showed that

scale free networks display a high degree of resilience against random failures, a prop-

erty not shared by E-R graph. They argued that this is the basis of the error tolerance

of many complex systems like Internet and other communication networks; while key

components regularly malfunction, local failures rarely lead to the loss of the global

information-carrying ability of the network. Their simulation results also suggested
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that unlike random failure, scale free networks are highly sensitive against intentional

attacks. The diameter of these networks increases rapidly and network breaks into

many isolated components when the most connected nodes are attacked. But for E-R

graph, there is no substantial difference whether the nodes are selected randomly or

decreasing order of connectivity. These two opposite behaviors of E-R and scale free

networks are due to their homogeneous and inhomogeneous connectivity distribution

respectively. In [28], Cohen et al. analytically calculated the percolation threshold

for generalized random graphs against random breakdown of nodes. They considered

E-R network and scale free networks as special cases and calculated the percolation

threshold for these two graphs. According to their analysis, giant component of E-R

graph dissolves when average degree ⟨k⟩ is less than or equal to one. In the case of

Internet which follows power law distribution, percolation threshold depends on the

exponent α. For α > 3, there exits a percolation threshold fc which fragments the

giant component. However it has been shown that for α < 3, fc → 1, which indicates

that giant component exists for the breakdown of arbitrary large fraction of nodes.

In finite systems, transition is always observed, although for α < 3, the percolation

threshold becomes exceedingly high. For example, considering the enormous size of

Internet (N > 106) one needs to destroy 99% of the nodes before the giant compo-

nent actually gets destroyed. Subsequently, in [29] Cohen et al. studied the problem

of intentional attack in scale free networks. According to their analysis, since just

a few nodes of very high degree control the connectivity of the entire system, very

few fraction of nodes is needed to be removed to destroy the giant component. They

analytically showed that percolation phase transition exists for all scale free networks

having α > 2. Callaway et al. [22] introduced the concept of percolation process and

applied it to examine the resilience of various real world networks like Internet. Using

the generating function formalism, they found the exact analytic solutions for node

percolation in scale free networks. In addition to uniform failure, they also formally

modeled the intentional attack by Heaviside step function. They showed both ana-

lytically and experimentally the change in the giant component size against attack as

the function of cut-off degree and fraction of node removed. In [127], Newman et. al

have developed the theory of random graphs with arbitrary degree distribution with

the help of generating function formalism. This paper analytically derived the exact

condition of phase transition towards formation of giant component, expressions to
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calculate average component size, the size of the giant component if there is one and

the average node-to-node distance within the graph. The results were compared with

several real world networks like WWW, collaboration network etc to demonstrate the

accuracy of their analysis.

There is a huge amount of work done in [54, 55, 57] to study the robustness of

scale free networks under systematic variation of attack strategies. Gallos et al. [54,

55, 57] introduced a general attack strategy where the probability that a given node

is removed, depends on the number of its links k via

W (ki) =
kαi∑N
k=1 k

α
i

(2.7)

For α > 0, nodes with larger k are more vulnerable, while for α < 0, nodes with lower

k are more vulnerable. The limiting cases α = 0 and α → ∞ represent the random

removal and targeted attack respectively. The results showed that the critical fraction

fc needed to disintegrate the network increases monotonically as α decreases. The

work is extended in [55], where the attack strategy is associated with the knowledge

available to the attackers. For example, in the intentional attack, removal of only a

small fraction of nodes is sufficient to destroy the network. This strategy, however,

requires full knowledge of the network topology in order to identify the highest con-

nected nodes. In many realistic cases, this entire information is not available, and

only partial knowledge exists. Accordingly, the high degree nodes can be removed

only with a certain probability that will depend on k. [55] showed that even a little

knowledge of the highly connected nodes in an intentional attack reduces the thresh-

old drastically compared with the random failure. This pointed to the vulnerability

of the Internet which can be damaged efficiently when only a small fraction of hubs

is known to the attacker. Moreover, this result is also relevant for immunization of

populations; even if the virus spreaders are known with small probability, the spread-

ing threshold can be reduced significantly. They also showed that even if the attack

does not yet disintegrate the network, there is nevertheless a major damage on the

network, since the distances between the nodes increase significantly and any trans-

port process on the network may become inefficient. Holme et al. [73] studied the

response of complex networks subject to attacks on nodes and edges. Several existing

complex network models as well as real-world networks of scientific collaborations
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and Internet traffic were numerically investigated, and the network performance was

quantitatively measured by the average inverse geodesic length and the size of the

largest connected subgraph. For each case of attacks on nodes and edges, four dif-

ferent attacking strategies were used: (A) removal by the descending order of the

degree, (B) betweenness centrality and these parameters are calculated either from

the initial network (A1, B1) or from the current network (A2, B2) during the removal

procedure. The results identified that removals by the recalculated degrees and be-

tweenness centralities are often more harmful than the attack strategies based on the

initial network suggesting that changes in the network structure is important as nodes

or edges are removed.

Lathapy et al. [70] investigated the often claimed affirmation that successful at-

tacks can be launched on scale-free networks, because large number of links get re-

moved as soon as the top degree nodes are removed. They showed that removing the

same number of links at random has much less impact, showing that this (removal

of links) was not the sole reason behind the attack efficiency. Finally, they proposed

two new node/link removal strategies and compared them with classical attack where

high degree nodes are removed. The first failure strategy randomly removes the nodes

of degree greater than one. This decreases the number of nodes of degree higher than

1 and increases the number of nodes of degree 0 or 1. The results revealed that

this kind of failure gives almost similar impact on networks compared to the classical

attacks. This tends to show that the presence of a threshold for classical attacks is

not due to a high efficiency, but rather to the fact that they do not remove nodes of

degree 1. The second failure strategy they proposed was based on link removal; they

removed, at random, links between nodes with degree greater than 1. They claimed

that this failure strategy is more efficient than the classical attack, with respect to

the fraction of removed links. In classical attack strategy, one may remove many links

attached to nodes of degree 1, which does not help in destroying the network. This

strategy, on the opposite, focuses on those links which really disconnect the network.

Crucitti et al. [36] studied the effects of errors and attacks on the efficiency of scale-

free networks. Two different kinds of scale-free networks have been considered and

compared to random graphs: scale-free networks with no local clustering produced by

the Barabasi-Albert (BA) model, and scale free networks with high clustering proper-
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ties as in the model by Klemm and Egúıluz (KE) [86]. They investigated the effects of

errors and attacks both on the global and on the local efficiency of the network. The

measure of network efficiency is defined by Wanga [166] in Eq. (2.4). The global effi-

ciency signifies the connectivity of the overall network whereas local efficiency denotes

the connectivity among the subcomponents of the network. The results showed that

both the global and the local efficiency of scale-free networks are unaffected by the

failure of some of the nodes. On the other hand, in scale-free networks the global and

the local efficiency rapidly decrease when the nodes removed are those with higher

connectivity. These properties are true both for BA networks and for KE networks,

though KE networks have higher local efficiency but lower global efficiency than BA

networks.

Resilience of some typical topologies

Tanizawa et al. [161, 162] provided a set of network design guidelines which maxi-

mized the robustness of the scale free networks both to random failures of nodes and

attacks targeted on the highest degree nodes. They examined the stability of two

regime power law networks, networks with combined degree distribution of power law

and exponential, two Gaussian distribution etc. Percolation on random regular graph

is discussed in [10, 120]. The works done in [119, 172] showed that in many physical

networks, the removal of selected nodes can have a much more devastating conse-

quence when the intrinsic dynamics of flows of physical quantities in the network is

taken into account. In a power transmission grid, for instance, each node (power sta-

tion) deals with a load of power. The removal of nodes, either by random breakdown

or intentional attacks, changes the balance of flows and leads to a global redistri-

bution of loads over all the network. Subsequently, Crucitti et al. [35] introduced a

simple model to explain the possibility of rare but catastrophic effect, triggered by

small initial shocks, present in most of the complex communication/transportation

networks. The results showed that the breakdown of a single node is sufficient to

affect the efficiency of a network up to the collapse of the entire system if the node is

among the ones with largest load. This is particularly important for networks with

a high hetereogeneous distribution of node loads like scale-free networks as well as
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real-world networks like Internet and electrical power grids.

Specialized network: Along with generalized networks, resilience of some of the

more uncommon and specialized topologies has been discussed in recent days. In [133,

135,161,162], Paul et al. introduced the concept of bimodal networks. They proposed

the guidelines to maximize the robustness of various kinds of networks (single regime

power law, two regime power law, bimodal networks) to both random failure and

intentional attack. In the similar line, Valente et al. [164] showed analytically that the

network configurations that maximize the percolation threshold under attack and/or

random failures have at most three distinct node degrees. Recently, Paul et al [134]

used Monte Carlo simulations to calculate percolation threshold in bimodal networks

and shown that the general criterion for percolation stated in [28] becomes invalid for

most of the real world networks due to the presence of degree-degree correlation.

Degree correlated network: A study on the real-world networks revealed

that most of these networks are degree correlated [123, 125]. Social networks are

found to be assortative (higher high-high degree connections) whereas networks like

information networks, technological networks, biological networks are found to be

disassortative (very less high-high degree connections). Noh [128] investigated the

nature of the percolation transition in a correlated network with a Poisson degree

distribution. First, he proposed a model for network generation with a tunable de-

gree correlation for a given degree distribution. The results revealed that negative

correlation is irrelevant since the percolation transition in the disassortative network

belongs to the same universality class as in the uncorrelated network. However, the

impact of the positive correlation on the percolation transition is relevant. In the pos-

itively correlated network, even at the critical point, mean size of finite components

does not diverge, hence a non-percolating phase transition occurs in the network.

In [165], Vazquez et al. studied the effect of degree correlations considering some

examples of uncorrelated, assortative, and disassortative graphs. They derived some

general expressions to obtain the bounds on the percolation threshold in correlated

networks. Their results showed that the existence of a finite amount of random mixing

of the connections between nodes is sufficient to make the graph robust under node

or edge removal provided the second moment diverges. Assortative correlations make

the situation even better; they can make a graph robust to random damage, even
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with a finite second moment of the degree distribution. This is in contrast to uncor-

related networks, which are robust only if the second moment of a degree distribution

diverges [28]. Recently, Goltsev et al. [67] also studied the percolation transition in

complex networks with degree-degree correlations. They demonstrated that both as-

sortative and disassortative mixing affect not only the percolation threshold but can

also change critical behavior at this percolation point. Their analysis showed that

the critical behavior is determined by the eigenvalues of ‘branching matrix’ and a

degree distribution. They derived the necessary and sufficient conditions for a corre-

lated network to have the exactly same critical behavior as an uncorrelated network

with the identical degree distribution. According to their analysis, a network may be

robust against a random failure even if the second moment of its degree distribution

is finite. On the other side, specific disassortative network may be fragile even when

the second moment of the degree distribution is divergent.

Real world networks: Huang et al. [74, 75] presented a detailed and in-depth

study on the response of peer-to-peer networks subject to attacks, and investigated

how to improve attack survivability by properly modifying their topological prop-

erties. They revealed the topological weaknesses of Gnutella-like p2p networks [80]

by identifying attack vulnerability via extensive simulations under realistic operat-

ing conditions. The results indicated that these networks are extremely robust to

random failures whereas highly vulnerable under intentional targeted attacks, which

is consistent with classical theories. Ripeanu et al. [142] showed that Gnutella node

connectivity follows a multi-modal distribution, combining a power law and a quasi-

constant distribution. This property keeps the network as reliable as a pure power-law

network when assuming random node failures, and makes it harder to attack by a

malicious adversary. They also suggested few precautions for Gnutella network to

ward off potential attacks. For example, the network topology information, that can

be obtained easily permits highly efficient denial-of-service attacks. Hence, some form

of security mechanisms that would prevent an intruder from gathering topology infor-

mation appears essential for the long-term survival of the network (although it would

make global network monitoring more difficult if not impossible). They also designed

an agent that constantly monitors the network and intervenes by asking servents to

drop or add links as necessary to keep the network topology optimal.
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Network immunization: Percolation in random graph is also used to model

the spread of diseases or computer viruses where some of the nodes are occupied

by the disease/virus and others are not [124]. The spreading dynamics are closely

related to the structure of networks. Emergence of giant component may spread the

diseases/viruses in the network which triggers epidemics in the society or Internet.

Various immunization techniques have been proposed to arrest the spread of disease

or computer viruses in the network [30]. Homle et al. [72] investigated strategies

for vaccination and network attack that are based only on the knowledge of the

neighborhood information. The analysis revealed that for most networks, regardless

of the number of vaccinated vertices, the most efficient strategies are to choose a

vertex v and vaccinate a neighbor of v with highest degree, or the neighbor of v

with most links out of v’s neighborhood. In this vaccination process, the node v

can be either the most recently vaccinated vertex (chained selection) or any random

vertex (unchained selection). For real-world networks the chained versions tend to

outperform the unchained ones, however the unchained strategies are preferable for

networks with a very high clustering or strong positive assortative mixing (larger

values than in seen in real world networks). In summary, choosing the people to

vaccinate in the right way will save a tremendous amount of vaccine and side effect

cases. Huang et al. [75] developed a novel framework for better characterizing the

immunization of Gnutella-like p2p networks by taking into account the cost of curing

infected peers. They prefer a small fraction of the most high-degree nodes as targets to

inject immunization information and the immunization processes probe the network

in a parallel fashion along links that points to a high-degree node with a probability

proportional to kα.

2.2.4 Scopes of work

A detail review of complex network theoretic approaches reveals that a wide variety of

work has been done on the stability analysis of large scale dynamic networks. In [28]

and [29], Cohen et al. calculated the deformed degree distribution of the scale free

network after random failure and intentional attack. However, a more complete the-

ory is needed to calculate the degree distribution of a network after any arbitrary kind
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of attack. This may enable us to achieve a more generalized framework to predict the

exact point of breakdown of a network after an arbitrary attack. Most of the theories

in the literature deals with the percolation in an infinite size networks. However, the

impact of network size on the percolation threshold need to be investigated. In p2p

literature, various churn models have been proposed and some measurement based re-

sults have been reported from rigorous experiments. Several network attack strategies

and defence techniques are also discussed. However, understanding the exact impact

of churn and attacks on the superpeer topology as well as analyzing the influence of

various structural parameters (like peer-superpeer fraction, their individual fraction,

degree correlation present in the network) on network stability is essential, but not

systematically investigated till now. A thorough theoretical understanding in this

aspect may in turn enable network engineers to properly interpret the measurement

results and design optimum network topology to improve various p2p services.

2.3 Dynamics of peer-to-peer networks

P2p networks are formed and maintained amidst continuous node and link dynamics

like bootstrapping of new nodes, peer churn, link rewiring etc. In subsection 2.3.1,

we review several proposed and commercially used bootstrapping protocols. This is

followed by a survey on the complex network theoretic approaches on network growth.

The impact of several link dynamics in p2p networks is reported in section 2.3.3.

2.3.1 Bootstrapping protocols

The key operation in any peer-to-peer network is bootstrapping, the initial discovery

of other online nodes participating in the network. Nascent peers need to perform

such an operation in order to find the IP addresses of online peers and connect to

them. The joining peers execute a bootstrapping function through peer servents like

Limewire, Gnucleus etc (in case of Gnutella network). The bootstrapping protocols

play a major role in the construction of efficient network topology and have signifi-

cant impact on the performance of the p2p networks. Significant amount of technical
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works [31, 62, 78, 82, 130, 156, 169] have proposed construction of optimum peer-to-

peer topology aimed towards maintaining desired quality of services. The proposed

bootstrapping protocols mainly aim to satisfy individual optimization criterions that

often land to the conflict of interests. The initial neighbors of a joining peer (selected

by bootstrapping) play an important role on the QoS enjoyed by that peer. These

initial neighboring peers determine the new peer’s location in the network topology,

and eventually its search and download efficiency. For instance, connecting with a

well networked peer possessing high processing power, large storage space put the

new node at the center of the topology thus reducing search latency and file down-

load time [82]. On the other hand, the time spent by the peer in bootstrapping is

critical because until the bootstrapping step is completed, a peer cannot participate

in the file sharing activities. Hence, a school of research proposed simplified joining

protocols to minimize the bootstrap latency. Recent research focuses on improving

the performance of p2p networks by incorporating network and semantic awareness

in the bootstrapping process [34]. In these protocols, the nodes with close physical

proximity and similar interests are selected for the initial connection establishment.

Network diameter is also considered as an important optimization metric; some boot-

strapping protocols are proposed which result in a provably strong guarantees on the

maximum network diameter [130]. Cramer et al. [34] compared different bootstrap-

ping techniques for p2p networks, including static bootstrap servers, out-of-band node

caches, random address probing, and network layer mechanisms etc. A brief overview

of these bootstrapping protocols follows next.

Random Address Probing

This is possibly the most simple bootstrapping technique suitable for large-scale over-

lay networks. A node wishing to join the network, randomly draws an IP address

from the global (or local) address space. It then tries to establish a connection to this

IP address using a well-known port. In case the connection cannot be established

because the node does not exist or does not participate in the p2p overlay, another

address has to be tried. Experimental results showed that a brute-force random

global scan for Gnutella peers requires on average 2425 attempts before finding the

first peer. While random address probing may be successfully used by very large p2p

networks, it is not efficient for small to medium scale networks, as many probes are

necessary. In [62] GauthierDickey et al. proposed a fully distributed bootstrapping
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of peer-to-peer networks which generates a stream of promising IP addresses to be

probed as entry points. In [31], Conrad et al. proposed a generic, distributed and

self-organizing bootstrap service based on the random address probing. The proposed

bootstrap service itself uses a p2p network namely ‘bootstrap p2p network’, for dis-

tributed storage of the bootstrapping information. The fundamental assumption is

that, IP addresses in peer-to-peer networks have a significant bias in their distribu-

tion across different organizations, as evidenced in Gnutella and Skype measurements.

Hence, the protocol is based on the classification of IP address ranges across the or-

ganizations using DNS that may help to improve the success rates of bootstrapping.

The paper claimed that this approach improved the ‘success rate’ of random address

probe for small private p2p networks as well as for large p2p networks.

Employing Network Aware Mechanisms

In order to optimize the traffic in the physical network, the discovery of online nodes

while bootstrapping, should be based on the topological structure of the underlying

network. If some online nodes are available in the same network segment, it is both

convenient and highly efficient to use network layer mechanisms to connect to these

nodes, at least for bootstrapping. In this context, Cramer et al. [34] proposed locality

aware bootstrapping service that supports p2p overlay networks in discovering nodes

that are nearby in terms of the underlay network topology.

Modifications for improving QoS

One of the most cited papers in the topic, Pandurangan et al. [130] proposed a boot-

strapping algorithm which builds a p2p network with small diameter keeping the

average degree constant. However, the design heavily depends on a central server

that is needed to coordinate the connections among peers. In [168, 169], Wouhaybi

et al. proposed Phenix, a distributed algorithm that constructs scale free p2p net-

works offering resilience and fast response time to users. The algorithm used some

variations of preferential attachment along with some amount of randomness mixed

within it. The work done in [78,117] proposed gossip based protocols to construct the

application specific superpeer networks. The idea of a generic bootstrap service in

structured p2p networks was also discussed in [24] and [77]. Recently, in [90] Kwong

et al. proposed a distributed bootstrapping protocol with random walk based joining

and relinking process and have shown that topological structure of p2p networks de-

pends heavily on the node heterogeneity and capacity distribution of joining nodes.
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Bootstrapping Servers

Initially, in p2p networks like Gnutella, the bootstrapping problem was solved by

placing static nodes (i.e. servers) in the overlay. Peer servents contained hard-coded

DNS names of the bootstrapping nodes. These bootstrapping nodes, called ‘pong

caches’ [81] in Gnutella, collected topological information and addresses of other

nodes participating in the overlay. On request by a newly joining node, the pong

caches returned a list of addresses of nodes seen recently in the overlay. The new

node then tried to establish overlay connections to the nodes in this list. This boot-

strapping method though simple however lacked scalability [167] and required at least

some administrative overhead.

Out-of-band node caches: GWebCache

The Gnutella community introduced GWebCache (Gnutella web caches), to overcome

the limitations of the pong cache mechanism [82]. The GWebCache system functions

as a distributed repository of the online peers in the network. There are two funda-

mental activities that is associated with the GWebCache (i) accessing the cache (ii)

updating the cache.

(i) Accessing the cache: When a new peer wants to join the Gnutella network,

it can retrieve the host list from one or more of these GWebCaches. Limewire and

Gnucleus maintain a separate list of superpeers and give priority to hosts in this

list during connection initiation. Since superpeers have relatively long uptimes and

the capability to support more incoming connections, prioritizing these peers during

connection initiation increases the probability of successful connections hence reduces

the bootstrap latency. The GWebCaches also maintain a list of other web caches in

the network.

(ii) Updating the cache: A host accepting incoming connections, updates the

GWebCache with its own IP address and port number, and with information about

some other GWebCache that it believes is alive. Some of the peer servents like

LimeWire and Mutella update the GWebCaches only in the superpeer mode. The

peers in the Gnutella network are responsible for keeping the information in these

caches up-to-date; the caches do not communicate with each other at any time.

It becomes quite evident that GWebCache based bootstrapping protocols aim to select

resourceful nodes for the initial connection establishment. This optimizes the search

latency and file download time of the newly joined peer due to the efficiency of its
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neighbors. GWebcache based bootstrapping protocols are widely used by the servents

of the popular superpeer networks, like Gnutella 0.6. Recent study [2] revealed that

there are 20 GWebCaches run by various servents, taking more than 700, 00 requests

per hour, which is almost 200 requests per second. Hence in this thesis, we concen-

trate on GWebCache based bootstrapping protocols and investigate the formation

of superpeer nodes in the network. We find that the GWebcache based bootstrap-

ping protocols can be suitably modeled by the preferential node attachments rules

where preference is given on the good nodes possessing high bandwidth and processing

power. There is a great deal of interest among physicists and mathematicians in un-

derstanding the growth of networks following preferential attachment [11,16,18,87]. A

detailed review helps us to understand the problem in context and to develop suitable

modeling scheme for explaining the emergence of superpeer network.

2.3.2 Network growth in the perspective of complex network

theory

It has been found that degree distribution of most of the large scale networks like

Internet, Web network etc follow power law, hence most of the theories developed to

understand the topology of the emerging network is directed towards explaining the

emergence of scale free networks. In this context, several complex network theoretic

models are proposed in the literature. The most popular among them is the Barabasi

and Albert (BA) model where appearance of scale free networks is explained with

the help of preferential attachment rules [11]. Kleinberg et al. proposed vertex

coping model of network growth [84, 89] where the network grows stochastically by

constant addition of nodes and the addition of directed edges either randomly or by

replicating the edges from another existing node. In [51], Fabrikant et al. proposed a

plausible explanation of the power law distributions observed in the graphs arising in

the Internet topology. In this growth paradigm (FKP growth model), the incoming

node i stochastically connects to an existing node j such that the node j is physically

close to node i (small Euclidean distance dij between the node i and j) and at the same

time the node j is centrally located in the network (hop distance of j, (hj) to the other

nodes is minimum). Callaway et al. [21] proposed the model of evolving network that
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is initially scattered into disconnected components and eventually merged with each

other to form large components. In this model, nodes may join the network without

necessarily connecting with some existing node. Then, with probability d, two nodes

are chosen uniformly at random and joined by an undirected edge. This may result in

a growing network containing isolated nodes along with components of various sizes.

However, among these various growth models, the BA model is the simplest one,

widely studied and suitable to model the GWebCache based bootstrapping process.

Hence, in this section we provide a detailed review on BA model and its wide range

of variations.

Barabasi–Albert model and its variations

The original concept of scale free network and preferential attachment was discovered

by Derek de Solla Price. In 1965, he described the first instance of a scale-free network

in the citation network. He found out that both the in-degrees and out-degrees of the

network of citations between scientific papers follow a power-law distribution [39].

Some years later, Price published his explanation for the arising power-law degree

distributions [40]. He built up his work on the ideas of Herbert Simon [150], developed

in 1950s, which showed that power law arises when “the rich get richer”. Price coined

the term cumulative advantage to denote this phenomenon. However the work was

rediscovered some decades later by Barabasi and Albert [11], who gave the attachment

a new name - preferential attachment. In this highly influential paper, Barabasi et

al. proposed a network growth model of the World Wide Web network. They showed

that, a power-law degree distribution emerges naturally from a stochastic growth

process in which new nodes link to existing ones with a probability proportional to the

degree of the target node. The model of Barabasi and Albert (also popularly known as

BA model) attracted an exceptional amount of attention in the literature. In addition

to analytic and numerical studies of the model itself, many researchers have suggested

extensions or modifications of the model that alter its behavior or make it a more

realistic representation of processes taking place in real-world networks [87]. The

refined variants of this preferential attachment process allow nonlinear attachment

probabilities, fitness of nodes and links, aging, rewiring of edges, and appearance of

truncated power law [51,87,155]. A brief review follows.

Nonlinear attachment: In [87], Krapivsky et al. generalized the BA model where
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the probability of attachment to a node goes as some general power of degree kγ. By

solving the model by rate equations, the paper found three general classes of behavior.

In linear preferential attachment (γ = 1), the evolving network showed power-law

degree distribution. In sublinear attachment (γ < 1), the degree distribution became

power law multiplied by a stretched exponential, whose exponent is a complicated

function of γ. In superlinear case (γ > 1) a ‘condensation’ phenomenon was identified,

in which a single node gets a finite fraction of all the connections in the network, and

for γ > 2 there is a non-zero probability that this “gel node” gets connected to every

other node on the graph. In the same article, Krapivsky et al. showed that there is

a correlation between the age and degree of the nodes; older nodes acquired higher

mean degree. For m = 1, the degree distribution of a node i with age a may be

expressed as

pk(a) =

√
1− a

n

(
1−

√
1− a

n

)k

(2.8)

Thus for specified age a, the distribution is exponential, with a characteristic degree

scale that diverges as
√

1− a
n
as a→ n. The older vertices have substantially higher

expected degree than the vertices added later, and the overall power-law degree dis-

tribution of the whole graph is a result primarily of the influence of these earliest

vertices. In [42,43], Dorogovtsev et al. also took the ageing of nodes into account so

that a link is connected not only preferentially towards degree, but also depending on

the age of the node. In [43], each new node of the network is connected to some old

node with probability proportional (a) to the connectivity of the old node as in the

Barabasi-Alberts model and (b) to τ−γ, where γ is the age of the old node. The sim-

ulations and theoretical results revealed that the network shows scale free behavior

only in the region γ < 1. When γ increases from −∞ to 0, the power law exponent

of the degree distribution grows starting from the value 2. At γ = 1, the exponent

moves to ∞ whereas for γ > 1, the distribution pk becomes exponential. The correla-

tion between the degree scaling and age of the vertices has been used by Adamic and

Huberman [5] to show that in actual World Wide Web network data, there is no such

correlation present as such. It seems that the dynamics of the Web is much more

complicated than this simple model can explain. Adamic and Huberman suggested

that, this is because the degree of vertices is also a function of their intrinsic worth;

some Web sites are useful to more people than others and so gain links at a higher



2.3 Dynamics of peer-to-peer networks 43

rate. This gives rise of the concept of ‘fitness’ that represents the attractiveness of a

node to accrue new links.

Fitness model: Bianconi and Barabasi [18] argued that in real networks, nodes

have a competitive aspect such that each node has an intrinsic ability to compete

for edges at the expense of other nodes. This paper proposed a model in which each

node is assigned a fitness parameter η which does not change over time. Thus at

every timestep a new node j with a fitness nj is added to the system, where j is

chosen from a distribution ρ(η). Each new node connects to m existing nodes in the

network, and the probability to connect to a node i is proportional to the degree and

the fitness of node i. The rate of change of degree of a node can be calculated with

the help of continuum theory [11]. The results offered interesting insights into the

evolution of nodes in a competitive environment. In the scale-free model, where each

node has the same fitness, all nodes increase their connectivity following the same

scaling exponent β = 1/2. In contrast, when different fitness is allowed, multiscaling

emerges and the dynamic exponent depends on the fitness parameter, η. This allows

nodes with a higher fitness to enter the system at a later time and overcome nodes

that have been in the system for a much longer timeframe. It is interesting to note

that despite the significant differences in their fitness, all nodes continue to increase

their connectivity following a power-law in time. Thus, the results indicated that the

fitter wins by following a power-law time dependence with a higher exponent than its

less fit peers. A number of variations on the fitness theme of Bianconi-Barabasi model

have been studied by Ergun and Rodgers [50]. This paper proposed a model where

instead of multiplying the attachment probability, the fitness η contributes additively

to the probability of attaching a new edge to node i. Treating the models analyt-

ically, Ergun et al. found that for suitable parameter values, the power-law degree

distribution is preserved, although the exponent may be affected by the distribution

of fitness, and in some cases there are also logarithmic corrections to the degree dis-

tribution. The impact of the fitness distribution ρ(η) is also analyzed in [17,88]. The

results indicate that depending on the distribution ρ(η), the network either shows a

power-law degree distribution or one node with the highest fitness accrues a finite

fraction of all the edges in the network; a sort of “winner takes all” phenomenon.

In [45], Dorogovtsev and Mendes extended the BA model in which the proba-
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bility of attachment to a vertex of degree k is proportional to k + k0 where offset

k0 represents the amount of randomness incorporated within the attachment kernel.

Extensive analysis of the model revealed that this kind of attachment generates power

law degree distribution (pk ∼ k−α) for large k, with exponent α = 3+ k0/m. Further

analysis revealed that negative values of k0 could be the explanation of the power law

exponent α < 3 seen in real-world networks. In [44], Dorogovtsev et al. proposed

more sophisticated BA model whereby edges appear and disappear between preexist-

ing nodes with stochastically constant but possibly different rates. They found that

over a wide range of values of the rates, the power-law degree distribution is main-

tained, and the exponent varies in the zone α < 3 based upon the rate. In another

article, Bianconi [16] presented a growth framework in which both nodes and links

are assigned some weights. Two classes of weighted networks are considered (i) class

I, in which the degree of the node does not affect the weights of its links, (ii) class II,

in which the node degrees strongly influence the link weights. In this framework both

node degrees and link weights increase following a preferential attachment rule. The

strength of a node i in the weighted network is defined as the sum of all the weights

of incoming and outgoing links si =
∑

j wij. The results showed that networks of

class II emerge only when the rate, at which nodes are strengthened is higher than

the rate at which new links are established.

Krapivsky and Redner [88] studied a full directed-graph model in which both

vertices and directed edges are added at stochastically constant rates and the out-

going end of each edge is attached to vertices in proportion to their out-degree and

the in-going end in proportion to in-degree, plus appropriate constant offsets. [88]

showed that this kind of dynamics give rise to power law in both the in and out-

degree distributions, just as observed in the real Web network. By varying the offset

parameters for the in and out-degree attachment mechanisms, one can even tune the

exponents of the two distributions to agree with those observed in the Web network.

Some of the works related to the presence of exponential cutoff degrees in the WWW

networks have been reported in [52,53]. They modeled the appearance of exponential

cutoff in the power-law scaling, although this cutoff may only be observable in the

tail of the distribution for extremely large networks.
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2.3.3 Local events in emerging p2p networks

In addition to the peer bootstrapping, several local events like peer churn and link

rewiring play a major role in determining the asymptotic degree distributions and

other topological properties of p2p networks. Consequently, efficiency of several func-

tionalities like search also get influenced. We have detailed the survey on peer churn

in the previous section. Here we present various strategies of link rewiring taken

sometimes proactively, some reactively (to offset churn).

Guclu et al. [68] discovered the relationship between the frequent departure of the

online peers and its impact on the search efficiency in p2p networks. This paper devel-

oped a rewiring based reactive protocol, activated at the time of node departure due

to churn, so that the search performance of the topology remains high. The topology

formation and maintenance schemes described in this paper are mainly based upon

the local information available. Semantic overlay networks cluster peers that are se-

mantically or socially close into groups, by means of a rewiring procedure that is

periodically executed by each peer. This procedure establishes new connections with

similar peers and disregards connections to peers that are dissimilar. In [38], Das et

al. proposed an algorithm, to identify inherent community edges [126] among peers

and evolved the topology accordingly. In that goal, new links were added among sim-

ilar nodes keeping the original overlay edges intact. The topology evolution algorithm

ensured bounded increase in the node capacities (i.e. average number of neighbors

that a node can maintain). The simulation results demonstrated that these linking

schemes successfully improved the performance of random walk based search algo-

rithms. In [140], a generic approach of rewiring is presented and several variants of

this approach are reviewed and evaluated. The results showed the way peer connec-

tion is affected by the different design choices across the rewiring mechanisms and

consequently the way these choices influenced the overall system performance. In

large scale dynamic networks also, a series of microscopic events shape evolution of

the network, including the addition or rewiring of edges or removal of nodes or edges.

Similar to growth, extensive work has been done to model the churn/rewiring process

which we describe next. This is important to note that, in section 2.2.1 we consider

churn in a static network, however this section deals with the churn in the continu-
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ously evolving network.

Complex network approaches

Several complex network theoretic models have been proposed to investigate the effect

of selected processes in various real world networks. Any local change in the network

topology can be obtained through a combination of four elementary processes: addi-

tion or removal of a node and addition or removal of an edge. But in reality, these

events come jointly, such as the rewiring of an edge is a combination of an edge re-

moval and addition. A brief study on all these dynamics follows. First we focus on

the addition and removal of nodes and links in a growing and nongrowing network.

Then we include the rewiring dynamics in our study.

Krapivsky et al. [12] introduced a simple network growth model with addition and

deletion of nodes. In this model, a new node joins the network with a randomly

selected existing node. On the other hand, when a node is deleted, its children are

attached to its parent. Analysis showed that component size distribution of this kind

of evolving network has a power-law tail and the exponent α varies continuously with

the addition rate. This paper also observed that the degree distribution evolves by

an aggregation process since the parent node inherits all incoming links of a deleted

node. Hence, the deletion process results in condensation phenomenon; a giant hub

appears which is connected to a finite fraction of the nodes in the system. In [64],

Ghoshal et al. focused on creating networks whose topology can be manipulated by

adjusting rules of node joining and departure. Moore et al. [118] studied the process

of network growth by the constant addition and removal of nodes and edges. The

results showed that at steady-state (when node joining and removal rate is almost

same), if joining nodes get attached to other nodes at random (without preference),

the degree distribution sharply peaked at the maximum and then rapidly decays with

Poisson tail. If the joining nodes attach to other nodes using a linear preferential at-

tachment mechanism, the degree distribution becomes a stretched exponential. And

finally, when the network shows net growth, i.e. nodes joining faster than its removal,

the degree distribution follows a power law with an exponent α such that 3 ≤ γ <∞.

In [7], Barabasi et al. took an important step towards understanding the network

evolution incorporating the node and link addition and rewiring of links. Using
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continuum theory [11, 18] they showed that, depending on the relative frequency of

these local processes, networks can develop two fundamentally different topologies. In

the first regime, degree distribution pk has a power-law tail, but the exponent depends

predominantly on the relative frequency of the local events. In the second regime the

power-law scaling breaks down, and pk approaches an exponential decay. Finally,

they used the model to fit the connectivity distribution of the network describing the

professional links between movie actors. Geng et al. [63] introduced the models of

network evolution that incorporate the four local processes at every time step: (a) the

addition of a new node with new links, (b) addition of new links between old nodes,

(c) the rewiring of links and (d) deletion of some existing links. They considered two

models (single or double preferential attachment(s)) of evolving networks that give

more realistic descriptions of the local processes. The analytical results showed that

these two models produce scale free networks (pk ∼ k−α) if the parameters are chosen

properly. More specifically, the addition of new links between the existing nodes in

the network does not change the scaling exponent α. However, the rewiring of links

or deletion of existing links decrease α.

In [131], Park et al. showed that a large, non-growing network can evolve by

itself into a scale-free state in a self organizing manner. First, in the unweighted

model, the investigation starts with a regular network where the links across the

nodes were removed and preferentially reestablished constantly in time (which is

controlled by the model parameter 0 ≤ λ < 1). Analysis showed that a network

evolving following such a simple rule can yield a spectrum of degree distributions

ranging from algebraic to exponential such that pk ∼ k−αeξk where the algebraic

exponent α and the exponential rate ξ depend on the model parameter λ. On the

other hand, the weighted network model is capable of generating robust scale-free

behavior where value of the exponent α in the range that fits many realistic networks

(between 2 and 3). Ohkubo et al. [129] applied the model of Park et al. [131] in an

undirected network where rewiring probability depends on the fitness parameter.

In [96], Lindquista et al. introduced two different schemes based upon the end

of rewiring; (a) rewiring from a randomly selected node and (b) rewiring from a

neighbor of the randomly selected node. The equilibrium degree distributions were

analytically derived using a general ordinary differential equation (ODE) model. The
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model provided insights of the net effects of rewiring itself, as the number of links

and the number of nodes in the network are conserved throughout the analysis. The

results indicated that regardless of the attachment probability (as long as it is same

in both rewiring methods), rewiring from a neighbor generally produces more high

degree nodes in the equilibrium distribution than rewiring from a random node. Nima

et al. [147] used the continuous rate equation approach to predict the power-law

exponent in stochastic models, where new nodes preferentially join the network and

existing nodes depart the network at a constant rate. Their analysis showed that

for such models, the power-law degree distribution appears in the evolving network

with exponent α > 3 and it rapidly approaches ∞ as the deletion and insertion

rates become equal. In the next step, they introduced a compensatory rewiring

process, where existing nodes compensate for lost links by initiating new preferential

attachments. Further analysis revealed that by regulating the rewiring rate, the

exponent of the power-law the degree distributions of the resulting networks (for any

deletion rate), can be tuned as close to 0.2.

Networks are formed as a result of many different processes that may have little

to do with robustness. It thus seems important to explore whether the existing

networks can be modified to improve robustness without appreciably degrading the

network’s performance. In Beygelzimer et al. [14] proposed such modification schemes

(preferential rewiring, preferential random edge rewiring, random edge rewiring, and

random neighbor rewiring), wherein either existing edges are randomly rewired to

connect different pairs of nodes, or else new edges are added randomly to the network.

Such random perturbations decrease the network’s dependence on its hubs, making

it more robust against degree-based attacks. This paper presented empirical results

to show how robustness, as measured either by the size of the largest connected

component or by the shortest path length between pairs of nodes, was affected by

different strategies that alter the network by rewiring a fraction of the edges or by

adding new edges. A modest alteration of an initially scale-free network can usefully

improve robustness against attack, particularly when the fraction of attacked nodes

is small,
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2.3.4 Scope of work

Section 2.3.2 shows that an extensive amount of work has been done in network science

to understand the growth of complex networks. However, the main thrust of research

still remains in understanding the evolution of scale free networks. Unlike social

networks, in computer networks each node can have a maximum connectivity/degree,

little attention has been paid to model such constraints. On the other hand, in

p2p community, most of the work done are directed towards experimental based

understanding of different bootstrapping protocols and to propose improvement in

the performance of p2p services. Such ad hoc improvements seem to have limited

utility compared to the overhead they incur. Hence, instead of focusing on the more

complicated and sophisticated bootstrapping protocols, the impact of simple joining

rules on the emerging network topologies need to be understood properly. Analysis of

the outcomes of different measurement studies related to the formation of superpeer

networks in the light of the complex network theoretic approaches may uncover some

interesting results. These results can provide important suggestions to the network

engineers to improve the performance of superpeer networks in a very cost effective

manner.

2.4 Conclusion

In this survey, we have provided (1) a review on the superpeer networks and the

related dynamics that occurs on and of the networks (2) a study of complex network

theoretic approaches suitable to capture the topological as well as dynamical aspects

of the p2p networks. In category (1), we have presented a substantial review on the

topology of peer-to-peer networks, more specifically on superpeer networks. We have

discussed the formation of superpeer networks; various proposed and commercially

available bootstrapping protocols are presented. The impact of several peer dynamics

(user churn and attacks) on the network topology and various defence strategies

are also illustrated. In category (2) several models representing large scale complex

networks are provided. This is followed by a detailed study on the complex network
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theoretic approaches related to resilience and evolution of large scale networks.

With a detailed understanding of the state of the art, we move on to report our

contributions. In the next two contributory chapters (Chapter 3 and 4), we analyze

the stability of superpeer networks against churn and attacks. The Chapters 5 and 6

focuses on the emergence of the superpeer networks amidst bootstrapping and other

node and link dynamics.



Chapter 3

Churn and stability of superpeer

networks

3.1 Introduction

The following two chapters analyze the stability of superpeer networks against peer

churn and attacks. More specifically this chapter deals with the stability analysis

against peer churn while Chapter 4 deals with the attacks on the superpeer networks.

A detailed background study which brought forward the importance as well as the

present state of the art of the problem has been already presented in Chapter 2.

In this chapter, we model superpeer networks with the help of random graphs and

peer churn and attacks as the removal of nodes from such network. We represent the

network topology as the ensemble of graphs with degree distribution pk which signifies

the fraction of nodes in the network with degree k. Along with modeling the super-

peer topology, we also simulate Gnutella networks following (a) commercial servent

protocols (b) real data from topological snapshot. The node removal process is based

on the node degree and modeled by another probability distribution fk (probability

of removal of a node of degree k). We define a metric to measure the stability of

the network based upon the concept of giant component. Giant component signifies

51
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the largest connected component in the network whose size is of the order of size

of the network [116]. The dissolution of the giant component due to the removal of

nodes indicates the percolation point and we use percolation threshold as the stability

metric.

Based upon these models and metrics, we develop an analytical framework to

examine the stability of superpeer networks against node removal. We apply this

framework to measure the stability of superpeer networks against peer churn [110].

We estimate the impact of peer churn on the network and report the influence of peer-

superpeer degree and their respective fractions on the network stability. We show

that superpeer networks exhibit stable behavior against churn which is supported by

recent measurement studies [158,160]. We perform stochastic simulations to validate

the theoretical framework developed in this chapter.

The rest of the chapter is organized as follows. In section 3.2, we formalize and

model various environmental parameters that will be used throughout the thesis. This

includes modeling network topology with the help of degree distribution, various node

dynamics like churn and attack through node dynamics. Here we also explain the

simulation environment generated to mimic large superpeer networks and specify the

methodology to measure the stability of the network. In section 3.3, we develop an

analytical framework to analyze the stability of peer-to-peer networks against various

node dynamics. In section 3.4, we utilize the developed formalism to assess the

stability of superpeer networks against peer churn. We also validate the theoretical

results with the help of simulations. Finally section 3.5 concludes the chapter.

3.2 Environment definitions

In this section, we formally model different peer-to-peer networks and churn/attacks

to develop the analytical framework. Also we define the stability metric and explain

the simulation undertaken to verify the theoretical results.
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3.2.1 Modeling superpeer networks

A survey in the literature reveals that most of the real world networks can be repre-

sented as large scale complex graphs. In this thesis, we use a wide range of superpeer

network representations; from scale free network to real Gnutella network. The differ-

ent types of superpeer overlay networks can be modeled using uniform framework of

probability distribution pk, where pk is the probability that a randomly chosen node

has degree k. The networks discussed next can be categorized into two segments

1. networks that are modeled to represent superpeer networks 2. networks that are

simulated to replicate the real world networks. We specifically focus on the generation

of Gnutella networks as the representative commercial peer-to-peer networks.

Superpeer networks modeled as complex graphs

We model the superpeer networks with different kind of complex graphs; (a) bimodal

network (b) mixed poisson network (c) scale free networks

(a) Bimodal network: We believe bimodal network is simple enough to under-

stand and analyze; at the same time it captures the essence of commercial superpeer

networks [133, 139]. In bimodal network, superpeer topology can be modeled by bi-

modal degree distribution where a large fraction (r) of peer nodes with small degree

kl are connected with superpeers and few superpeer nodes (1 − r) with high degree

km are connected to each other. Therefore only two separate degrees are allowed in

this kind of network. Formally

pk > 0 if k = kl, km; pk = 0 otherwise (3.1)

kl & km are degrees of peers and superpeers respectively. Therefore pkl = r and

pkm = (1− r).

(b) Mixed poisson network: We can model the superpeer networks in a more

sophisticated way as mixed poisson network which is the superposition of two Pois-

son distributions with different average degrees ⟨k⟩ [19]. In mixed poisson network,
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interconnection between superpeers are selected to approximate a E-R graph [48,49]

which follows Poisson distribution. Similarly, the degree distribution of peers follows

another Poisson distribution. The average degree of the superpeers is much higher

than peers. Mathematically, if r be the fraction of peers in the network1 and rest are

superpeers then degree distribution of the network

pk = rpkpr + (1− r)pkspr (3.2)

where degree distribution of peers pkpr =
⟨kp⟩kpr e−⟨kp⟩

kpr!
and superpeers pkspr =

⟨ksp⟩kspr e−⟨ksp⟩

kspr!

follow Poisson distribution with average degree ⟨kp⟩ and ⟨ksp⟩ respectively, and ⟨kp⟩ <<
⟨ksp⟩. The average degree of the mixed poisson network becomes

⟨k⟩ = r⟨kp⟩+ (1− r)⟨ksp⟩ (3.3)

(c) Scale free networks: Communication networks have been intensively stud-

ied during the last several years. It has been found that many peer-to-peer networks

may be characterized by the power law degree distribution

pk ∼ k−α (3.4)

where pk is the fraction of nodes in the network of degree k. Here exponent α is a

constant whose value is typically in the range 2 < α < 3.

Superpeer networks simulated as Gnutella networks

We simulate commercial Gnutella networks following two different strategies (a) boot-

strapping protocols (b) topological snapshot. We explain them one after another.

(a) Gnutella network generated from bootstrapping protocol: In order

to simulate the Gnutella network, we follow the procedure described in [82]. The

procedure is based upon the bootstrapping protocol followed by different commercial

Gnutella clients like limewire, mutella, etc. In order to join the network, peers execute

1If total number of nodes in the network is N and out of them np is the number of peers then

r =
np

N .
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these bootstrapping protocols in which they discover other online peers/superpeers

and establish connections with them. Gnutella web caching system is used to deter-

mine the addresses of online peers/superpeers that would allow the incoming peer to

join the network. We simulate the bootstrapping protocol as the user level thread

which is executed by the incoming peer and construct the emerging network. We find

that as the number of nodes in the networks (N) grows towards a very large value

(N → ∞), the topology stabilizes to some specific degree distribution.

(b) Gnutella network generated from the topological snapshot: In ad-

dition to simulating the Gnutella network following the bootstrapping protocol, we

simulate another Gnutella network following the snapshots obtained from the Mul-

timedia & Internetworking Research Group of University of Oregon, USA [1]. The

snapshot is obtained by the research group during September 2004 and the size of

the network simulated from the snapshot is of 1, 31, 869 nodes.

3.2.2 Churn and attack models

Nodes in the p2p network join and leave the network randomly without any central

coordination. This churn of nodes might partition the network into smaller fragments

and breakdown communication among peers [146]. In addition, stability of the over-

lay network can get severely affected through intended attacks targeted towards the

important peers [138, 145]. The importance of a node is mainly characterized by its

connectivity and bandwidth. We model peer churn and attacks as the removal of

nodes from the network along with their adjacent links. In our framework fk is used

to specify the churn and attack models where fk be the probability of removal of a

node of degree k. Peer churn can be modeled by two different kinds of node failures

in the network, namely degree independent failure and degree dependent failure. The

formal modeling of the churn is presented next.

• In degree independent failure (or random failure), nodes are randomly se-

lected and removed from the network. Hence the probability of removal of any

node is constant, degree independent and equal for all other nodes in the graph.
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Mathematically, probability of removal a k degree node after this kind of failure

is fk = f (independent of k).

• In superpeer networks, peers having higher connectivity (e.g. superpeers) are

more stable in the network than the peers having lower connectivity (e.g. con-

nected through dial up line) because those loosely connected peers enter and

leave the network quite frequently. These observations lead us to model degree

dependent failure.

In degree dependent failure, probability of failure of a node (fk) having

degree k is inversely proportional to kγ. i.e fk ∝ 1/kγ ⇒ fk = α/kγ where

0 ≤ α ≤ 1 and γ is a real number. Therefore probability of the presence of a

node having degree k after this kind of failure is qk = (1− α
kγ
).

During attack, attackers remove the highest degree nodes from the network. To

identify the highest degree nodes in the network, the availability of the information

to the attacker regarding the topology of the network is important. Based upon the

availability of the information, we define two kinds of attacks, namely deterministic

attack and degree dependent attack. The formal modeling of attacks are presented

next.

• In deterministic attack, the nodes having high degrees are progressively re-

moved. Formally

1. fk = 1 when k > kmax

0 ≤ fk < 1 when k = kmax

2. fk = 0 when k < kmax. This removes all the nodes from the network with

degree greater than kmax and a fraction of nodes having degree equal to

kmax.

• In degree dependent attack, the probability of removal of a node (fk) having

degree k is proportional to kγ . i.e fk ∝ kγ ⇒ fk = Ckγ where γ is a real

number. γ is associated with the degree of knowledge of the attacker about

the topological structure of the network. A high γ indicates the availability of

sufficient amount of information to the attacker which eventually concentrates
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attacking a few high degree nodes. On the other hand, low γ reduces the

network information to the attacker, hence attack in this case is mostly tilted

towards random nodes in the network.

This is important to note that degree dependent attack can also reproduce the

degree independent failure and degree dependent failure just by adjusting the

parameter γ in the range of 0 ≤ γ < 1. However, this is not still explicit whether

degree dependent attack can also capture the deterministic attack.

3.2.3 Stability metric

The stability of overlay networks is measured in terms of certain fraction of nodes

(fc) called percolation threshold [22,116], removal of which disintegrates the network

into large number of small, disconnected components. Below that threshold, there

exists a large connected component which spans the entire network. This connected

component is also termed as the giant component. The value of percolation threshold

fc theoretically signifies the stability of the network, higher value indicates greater

stability against churn and attack. The existence of giant component can be math-

ematically captured by the ratio κ = ⟨k2⟩/⟨k⟩ where ⟨k⟩ and ⟨k2⟩ are the first and

second moments of the degree distribution; the value of κ ≥ 2 indicates the situation

where stability of the network is maintained [28,115]. The minimum fraction of nodes

required to be removed to put the value of κ equal to 2 is defined as the percolation

threshold fc.

Calculation of percolation threshold fc through simulation is a challenging task.

Theoretically, the size of the network as well as size of the giant component is infinite.

The removal of fc fraction of nodes reduces the giant component size from infinite to

finite. However in practice, all the networks (generated from simulation) are finite

in size. Hence, suitable methods need to be developed to simulate that phenomenon

in finite graphs. In section 2.2.3 of Chapter 2, we have presented a detailed survey

on various stability metrics. In this section, we describe two different techniques

to calculate percolation threshold from simulation. The first one developed by us

gives more practical insights regarding the change in the component sizes at the
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Figure 3.1: The above plots represent the change in the component size distribution

during percolation process and indicates the percolation threshold. Initially there

exists only single giant component of size 500 which disintegrates in subsequent steps.

percolation point. The second one follows a more theoretical approach as specified

in [56]. Fig. 3.3 shows that both of these approaches gives reasonably close percolation

thresholds during simulation. Henceforth throughout in this thesis, we use the second

approach to calculate percolation threshold fc.

Calculating percolation threshold from simulation

Technique 1.

Here we take cue from condensation theory to develop the metric to measure the

percolation threshold experimentally [102, 137]. During the simulation, we remove a

fraction of nodes f t (following attack model fk) from the network in step t and check

whether we reach the percolation point. If not, then in the next step t+1 we remove

f t+1 = f t + ϵ fraction of nodes from the network and check again. This process is

continued until we reach the percolation point. After each step, we find out the status

of the network in terms of the number and size of the components formed. We collect

the statistics of s and ns where s denotes size of the components and ns, number of

components of size s and define the normalized component size distribution CSt(s) =

sns/
∑

s sns at step t. We compute CSt(s) for all the steps starting from t = 1
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and observe the behavior of CSt(s) after each step (Fig. 3.1). Initially the CSt(s)

shows unimodal character confirming a single connected component (Fig. 3.1(a)) or

bimodal character (Fig. 3.1(b)) indicating a large component along with a set of small

components. As the fraction of nodes removed from the network increases gradually,

the network disintegrates into several components. This leads to the change in the

behavior of CSt(s) whereby at a particular step tn, CStn(s) becomes a monotonically

decreasing function indicating tn as percolation point (Fig. 3.1(c)). Therefore tn is

considered as the time step where percolation occurs and the total fraction of nodes

removed at that step f tn specifies the percolation threshold.

Technique 2

We follow the method used in [56] to find the simulated value of the percolation

threshold fc. In this experiment, we remove an arbitrary fraction of nodes fccandidate

(following attack model fk) from the network following the probability distribution

fk. This fccandidate
works as a candidate solution for the percolation threshold fc.

After removal of fccandidate
, we compute the new degree distribution p′k, first and

second moments ⟨k⟩ and ⟨k2⟩ of p′k and subsequently calculate κ = ⟨k2⟩/⟨k⟩. This

procedure is repeated for 100 realizations for a candidate fccandidate
and the number

of times κ becomes greater than 2 is calculated. We take different values of fccandidate

(0 < fccandidate
< 1) to perform the experiment. The particular value of fccandidate

, for

which 50% of times (realizations) κ > 2 and rest 50% of times κ ≤ 2 is considered to

be the simulated percolation threshold fc.

3.2.4 Simulation environment

In simulation, a peer-to-peer network is represented by a simple undirected graph

stored as an adjacency list. In order to generate the topology, every node is assigned

a degree according to the specific degree distribution. Thereafter the edges are gen-

erated using the “matching method” [106]. Some of the edges are then rewired using

“switching method” to generate sufficient randomness in the graph [105]. In our

experiment, we simulate the overlay network by generating graphs with 5000 nodes.

Churn or attack on a peer effectively means deletion of the node and its corre-
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sponding edges. We implement this phenomenon by removing a fraction of nodes in

each step depending on the disrupting event in the network. In the case of churn,

nodes are randomly selected using a time-seeded pseudo-random number generator

and its edges are removed from the adjacency list. For targeted attack, high degree

nodes in the network are removed sequentially in each step until the percolation point

is reached. We perform each simulation for 500 times and take the average of the

percolation threshold.

3.3 Developing analytical framework using gener-

ating function formalism

In this section, we derive an analytical framework for measuring the stability of overlay

structures undergoing any kind of disturbances in the network. With the help of this

framework, we find the critical condition for break down of the connectivity of the

network. This is an extension of Newman et al.’s theory on random graphs [127].

We assume that we have an infinite system, and so before any failure or attack the

biggest cluster size in the system is infinite. Theoretically, the question that we want

to answer is how severe should be the failure or attack to make the biggest cluster

size in the system finite.

We start out by giving some definitions. We have already defined pk as the prob-

ability of finding a randomly chosen node with degree k and fk as the probability

that a node of degree k is removed due to failure or attack. Thus, pk models the

ensemble of overlay structures and fk models the disruptive events that take place in

the network. Correspondingly qk = 1 − fk is the probability that a node of degree

k survives after node removal process. We are going to establish the relationship

between stability and pk and qk i.e. (1− fk) using the generating function formalism.

Generating function

Generating function has been widely used to model various stochastic processes [22,

127]. A brief introduction of generating function follows.

A generating function G(x) is formally a power series of x which encodes some
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probability distribution. Let us assume that G(x) generates the degree distribution

of the network given by pk, then the generating function takes the form

G(x) =
∞∑
k=0

pkx
k (3.5)

The connection between the generating function and the probability distribution it

generates is given by

pk = lim
x−→0

1

k!

dkG(x)

dxk
(3.6)

Another important property of generating functions is that the average of the index

of the probability, i.e., for G(x) the average degree z of a vertex, can be expressed

simply by

z = ⟨k⟩ =
∞∑
k=0

kpk = G′(1) (3.7)

Using this formalism we can formulate the generating function H0(x) which generates

the distribution of the component sizes to which a randomly selected node belongs

to. Subsequently the average size of the components can be calculated from H ′
0(1).

When this average component size becomes infinity, it indicates the emergence of

giant component and hence we can derive the critical condition for the stability of

the giant component. However to formulate H0(x), we have to use a set of generating

functions that are specified below.

Some useful generating functions

• H1(x) generates the distribution of the component sizes that are reached by

choosing a random edge and following it to one of its ends.

• F1(x) generates the probability distribution of the outgoing edges of the first

neighbor of a randomly chosen node after the process of removal of some portion

of nodes is completed.

• F0(x) is the generating function associated with the probability of a node having

degree k to be present in the network after the disruptive event.
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(a) Calculation of s1 (b) Calculation of s2

Figure 3.2: Schematic diagram explains the calculation of s1 and s2. White node

indicates the node reached by following a random edge and black nodes indicate the

removed nodes.

Derivation of F0(x)

The generating function F0(x) specifies the probability of finding a node of degree k

to be present in the network after the failure or attack. Since pkqk is the probability

of finding a node of degree k to be present after the disruptive event, applying the

definition of generating function (Eq. 3.5), we find that F0(x) takes the form

F0(x) =
∞∑
k=0

pkqkx
k (3.8)

Derivation of F1(x)

To reach the first neighbor of a randomly chosen node, we have to pick up one of

its outgoing links randomly and follow it until we reach the other end. Hence the

probability distribution generated by F1(x) is same as the probability distribution

of the outgoing edges of a node reached by following a random edge. Therefore

we derive the generating function F1(x), with the help of another generating function

A(x) which is based upon the probability of finding a randomly chosen edge connected

to a node of degree k.

Derivation of A(x):

If we think of an edge connecting two nodes i and j as actually two edges; one

going from i to j, and another from j to i, then total number of such edges in the
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system becomes
∑∞

k=0 knk, where nk is the number of nodes with degree k in the

system, which can be expressed as nk = Npk (N being the total number of nodes in

the system). The expected number of edges connected to nodes of degree k which

remained present after the node removal event is knkqk. So, the probability of finding

a randomly chosen edge connected to a node of degree k becomes

pon(k) =
knkqk∑∞
k=0 knk

=
kpkqk∑∞
k=0 kpk

=
kpkqk
z

(3.9)

In consequence the generating function associated to the probability pon(k) is

A(x) =
∞∑
k=0

pon(k)x
k =

∞∑
k=0

kpkqk
z

xk

Since
∑∞

k=0 kpkqkx
k can be expressed as xF ′

0(x) therefore with the help of Eq. (3.7)

A(x) = xF ′
0(x)/G

′(1) (3.10)

Derivation of F1(x):

The generating function F1(x) is based upon the probability distribution signifying

the outgoing degree of a node reached following a random edge. We know that a node

having degree k arrived following a random edge has only k − 1 outgoing links that

leave from that node. Hence probability of finding an existing node (that survives

after the disruptive event) of k − 1 outgoing edges reached following a random edge

is pon(k) = kpkqk
z

as defined in Eq. (3.9). Therefore probability distribution of the

outgoing edges of the first neighbor of a randomly chosen node can be generated by

F1(x) =
∞∑
k=1

ponx
k−1 =

∞∑
k=1

kpkqk
z

xk−1 = F ′
0(x)/z (3.11)

Derivation of H1(x)

The function H1(x) generates the distribution of cluster sizes reached by following

an edge chosen uniformly at random. Without loss of generality, we assume that

following an edge, we can reach either a non existent node (node removed during

deletion) or an existent node. The probability of following the randomly chosen edge

and finding an existing/present node of degree zero is zero, the probability of finding

an existing node of degree one is p1q1/z, the probability of finding an existing node
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of degree two is 2p2q2/z, and so on. So the probability of finding a node following a

random edge is
∑∞

k=0 kpkqk/z = F1(1). In consequence, the probability of finding an

edge that leads to a node which has been removed is 1−F1(1). Clearly this is also the

probability of following a randomly chosen edge that leads to a zero size component.

Therefore if s0 is the coefficient that accompanies x0 in H1(x) then s0 = 1− F1(1).

To find the full expression of H1(x) we have still to look for the probabilities that

accompany non-zero size components. We find those probabilities next with the help

of induction method.

Calculation of s1, s2 etc: We calculate the probability s1 of finding a component of

size 1 by following a randomly chosen edge. This is nothing else than the sum of the

probabilities of following an edge and finding a node of degree k which has its other

k−1 edges connected to zero size components (all the nodes in these components are

removed) (Fig. 5.1(a)). This can be expressed as:

s1 =
∞∑
k=1

kpkqk
z

(1− F1(1))
k−1

= F1(H1(0)) = lim
x−→0

1

1!

d(s0 + xF1(H1(x)))

dx

where pon(k) = kpkqk/z and (1−F1(1))
k−1 is the probability of taking randomly k−1

edges and finding that all of them are attached to zero size components.

Knowing this we can easily calculate s2, the probability of finding a component

of size 2 by following a randomly chosen edge. s2 is the sum of the probability of

following a randomly chosen edge that leads to a node of degree k which is connected

to k− 2 zero size components, and has also an edge that leads to a component of size

1 (Fig. 6.2(a)). This can be expressed as

s2 =
∞∑
k=2

(k − 1)kpkqk
z

(1− F1(1))
k−2s1

= F ′
1(H1(0))H

′
1(0) = lim

x−→0

1

2!

d2(s0 + xF1(H1(x)))

dx2

where (1− F1(1))
k−2s1 is the probability of taking randomly k − 1 edges and finding

that k−2 edges are attached to zero size components, and one to a size 1 component.

The term k − 1 in s2 indicates that there are k − 1 possible configurations for these
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edges.

Similarly, we can calculate the probability of finding a component of size 3 by following

a randomly chosen edge

s3 = lim
x−→0

1

3!

d3(s0 + xF1(H1(x)))

dx3

and so on. This suggests a self-consistence equation for H1(x) that generates the

distribution of component sizes of nodes that are reached by randomly chosen edge

after the disruptive event

H1(x) = s0 + xF1(H1(x))

= 1− F1(1) + xF1(H1(x)) (3.12)

It can be easily verified that Eq. (3.12) leads to the correct expressions of s0, s1,...,

sn by applying Eq. (3.6).

Derivation of H0(x)

Along similar lines we can obtain the generating function H0(x) of the distribution

of the component size to which a randomly chosen node belongs to. The probability

that a randomly chosen node belongs to a component of size zero after the disruptive

event is 1 − F0(1). Similarly the probability of a randomly chosen node to belong

to some nonzero size component depends on the size of the components where all its

first neighbors belong to. Hence the expression for H0(x) takes the form:

H0(x) = (1− F0(1)) + xF0(H1(x)) (3.13)

Finally from Eq. (3.13) and recalling the definition of average given by Eq. (3.7), we

can obtain the average size of the components:

H ′
0(1) = ⟨s⟩ = F0(1) +

F ′
0(1)F1(1)

1− F ′
1(1)

(3.14)

As mentioned above, we are interested in knowing the threshold at which the average

cluster size becomes infinite. Clearly Eq. (3.14) diverges when 1 − F ′
1(1) = 0 ⇒

F ′
1(1) = 1, and this critical condition sets the threshold between finite and infinite

cluster sizes. We present an intuitive explanation for this critical condition of gi-

ant component disruption. F ′
1(1) represents the average outgoing links of the first
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neighbor of a randomly chosen node. After the node removal process, if this average

number of outgoing links is more than one, then the network should percolate, i.e. it

is possible to find an infinite cluster of connected nodes. But if it is less than one,

then it is very likely that by following a random edge, we land in a node that has no

outgoing link and thus no chance of reaching another existing node.

Finally replacing F ′
1(1) by its definition (Eq. (3.11)), we obtain a critical condition

for giant component formation

∞∑
k=0

kpk(kqk − qk − 1) = 0 (3.15)

The significance of the Eq. (3.15) lies in the fact that it states the critical

condition for the stability of giant component with respect to any type

of graphs (characterized by pk) undergoing any type of failure or attack

(characterized by qk). Formulating this general formula is one of the primary con-

tributions of this chapter and the thesis [112,114].

Using the formalism developed, we investigate the stability situation of various su-

perpeer networks elaborated next.

3.4 Stability of superpeer networks against churn

The p2p networks mostly experience churn of peers which we model as the removal

of nodes in complex graph. In section 3.2.2, we model the peer churn by two kinds of

node failures - degree independent and degree dependent. In the next two subsections,

we deal with these two kinds of failures and investigate their effect on the stability of

superpeer networks.

3.4.1 Stability analysis against degree independent failure

In this section, we discuss the effect of degree independent failure in generalized

random graph. If q = qr is the critical fraction of nodes whose presence in the graph

is essential for the stability of the giant component after this kind of failure then
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according to Eq. (3.15)

∞∑
k=0

kpk(kqr − qr − 1) = 0

⇒ qr =
1

⟨k2⟩
⟨k⟩ −1

(3.16)

Now if fr is the critical fraction of nodes whose random removal disintegrates the

giant component then fr = 1− qr . Therefore percolation threshold

fr = 1− 1
⟨k2⟩
⟨k⟩ −1

(3.17)

This is the well known condition [28] (derived differently) for the disappearance of

the giant component due to random failure. This shows that the proposed general

formula (Eq. (3.15)) can be used to reproduce Eq. (3.17) as a special condition.

3.4.2 Superpeer networks against degree independent failure

The superpeer networks mostly experience the churn of peers which can be modeled

by the failure of nodes in complex graph. In this section, we use our equations to

show that stability of the superpeer networks is quite unaffected due to churn of peers.

This observation is consistent with results from real life experiment [146, 158, 160].

We investigate the change of percolation threshold (fc) due to the change of fraction

of peers (r) and the connectivity of the superpeers (km) in the networks for various

types of failures. To ensure fair comparisons, we keep the average degree ⟨k⟩ constant
for all graphs. We verify our theoretical results with the help of simulation. First, we

consider the bimodal networks for our analysis. Subsequently, we analyze the more

realistic model of mixed poisson networks.

Bimodal Networks

The bimodal degree distribution is modeled in the following way. Let r be the fraction

of peers in the networks having degree kl and rest are superpeers having degree km
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Figure 3.3: The above plots represent a comparative study of theoretical and simu-

lation results of stability for two bimodal networks undergoing churn. Here X-axis

represents the fraction of peer nodes (r) existing in the network and Y-axis represents

the corresponding percolation threshold (fr). We keep the average degree ⟨k⟩ = 5

fixed and vary the superpeer degree km = 30, 50 for two plots. The tangential line

indicates the change in peer degree due to change in the peer fraction r.

where kl << km that is in bimodal degree distribution, pk becomes non zero only at

kl and km (Eq. (3.1)). Mathematically klpkl + kmpkm = ⟨k⟩ and pkl + pkm = 1 which

provides

pkm =
⟨k⟩ − kl
km − kl

pkl =
km − ⟨k⟩
km − kl

(3.18)

Degree independent failure

Therefore second moment of the degree distribution is given as ⟨k2⟩ = k2mpkm+k
2
l pkl =

⟨k⟩(kl + km)− klkm. Consequently, using Eq. (3.17) for random failure, we get

fr = 1− ⟨k⟩
⟨k⟩(kl + km − 1)− klkm

(3.19)

The equation can be written in terms of the fraction of peers. Peer degree in the

network denoted as kl can be derived as ⟨k⟩−(1−r)km
r

, where r is fraction of peers.
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Hence percolation threshold

fr = 1− ⟨k⟩r
⟨k⟩2 − 2⟨k⟩km + 2rkm⟨k⟩ − r⟨k⟩+ k2m − rk2m

(3.20)

Feasible fraction of peers : Since the peer degree kl needs to be at least one

(kl = 1) to be connected in the network therefore

kl =
⟨k⟩ − (1− rc)km

rc
≥ 1 (3.21)

⇒ rc ≥
km − ⟨k⟩
km − 1

(3.22)

That means we can form a bimodal network with prescribed peer and superpeer de-

grees only if the fraction of peers is greater than the feasible peer fraction (rc). For

km = 30, 50 this feasible fraction rc becomes 0.862, 0.918 respectively. Below that

fraction, there does not exist any network, therefore our theoretical analysis as well

as simulations are performed with fraction r above the feasible fraction rc.

Using Eq. (3.20), we study the variation of percolation threshold (fr) due to the

change in the fraction of peers (r) for networks with two different superpeer degrees

and compare the results through simulation (Fig. 3.3). In order to obtain percolation

threshold during simulation, we use the two techniques as described in section 3.2.3.

Since both techniques give reasonably close percolation thresholds during simulation,

we use ‘technique 2’ to calculate fc throughout this thesis. It can be observed from

Fig. 3.3 that simulation results match closely with theoretical predictions which shows

the success of our theoretical framework.

Observations

1. It is important to observe that for the entire range of peer fractions, the per-

colation threshold fr is greater than 0.7 which implies that superpeer networks

are quite robust against churn. Since churn affects peers and superpeers de-

pending upon their individual fraction in the network, peers are affected much

more than superpeers. The removal of a significant number of low degree peers

along with a few high degree superpeers have little impact upon the stability of
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the networks. Practical experience also ensures that superpeer networks exhibit

high robustness in face of churn [146,158,160].

2. Lower fraction of superpeers in the network (specifically when it is below 5%)

results in a sharp fall of fr, that is the vulnerability of the network drastically

increases when the fraction of superpeers is below 5%. When the fraction of

superpeers are high, the constituent peers are only connected to superpeers (and

not within themselves), hence stability of the network depends entirely upon

superpeers. As fraction of superpeer reduces below 5%, peer degree becomes

quite high (4 to 5). This gives rise to situations where significant number of peers

are not connected directly to the superpeers, but connected within themselves.

Hence removal of only a few randomly selected peers can also result in the

removal of fellow peers. This produces an avalanche effect which results in a

drastic reduction of stability of the network in this region.

Effect of superpeer degree: It is seen from Fig. 3.3 that increase of superpeer

degree km also increases the stability of the network (any vertical line in the plot for

a given fraction of peers r). Although the ratio superpeerfraction
peerfrcation

is constant in both

cases, the higher (lower) superpeer (peer) degree leads to the higher participation of

superpeers. In order to have a more fair comparison, next we define a metric namely

‘peer contribution’ formed using degree of a node and its fraction.

Impact of peer contribution

The peer contribution signifies the fraction of total bandwidth contributed by the

peers which essentially determines the amount of influence superpeer nodes exert on

the network. Suppose the total bandwidth contributed by peer nodes is X while that

by superpeer nodes is Y , then peer contribution becomes X
X+Y

. In our thesis, we

define peer contribution PrC by two parameters - peer degree and fraction of peers

in the network. Hence PrC = rkl
⟨k⟩ where ⟨k⟩ = rkl + (1− r)km. For a particular peer

contribution PrC , the required fraction of peers becomes r = (1 − (1−PrC)⟨k⟩
km

). The

percolation threshold fr is calculated by substituting the peer fraction r in Eq. (3.20)

for individual PrC which results

fr = 1− km − (1− PrC)k

kkm − 2(1− PrC)kkm − km + (1− PrC)k + km2(1− PrC)
(3.23)
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Figure 3.4: The plot represents the impact of peer contribution PrC upon the sta-

bility of the network against churn. Two different superpeer degrees km = 30, 50 are

considered. frem pr represents the fraction of pure peers required to be removed to

dissolved the network and fr indicates the corresponding percolation threshold.

The fraction of peers and superpeers required to be removed for random failure is

proportional to their respective share in the network (i.e. frem pr = rfr, frem sp =

(1− r)fr). These estimated values of frem pr, fr are plotted with respect to the peer

contribution PrC (Fig. 3.4) for superpeer degree km = 30, 50 and average degree

⟨k⟩ = 5. The theoretical model is sufficient for analysis as the model has been al-

ready validated through simulation.

Observations

1. It is interesting to note that increase in peer contribution initially increases

the fraction of peers required to be removed (frem pr) but after a critical peer

contribution (PrCrand), frem pr decreases. The fraction of peers required to be

removed can be written as frem pr = rfr. Hence the maximum peers required

to be removed can be obtained by

dfrem pr

dPrC
= 0 (3.24)

⇒ L1 + PrCL2

(L3 + PrCL4)2
+

(
L5 + PrCL6

L3 + PrCL4

)
= 0 (3.25)
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where L1, L2, L3, L4, L5 and L6 are the constants dependent on superpeer

degree km and average degree ⟨k⟩. By solving Eq. (3.25), we obtain the critical

peer contribution PrCrand maximizing the frem pr. Substituting PrC = PrCrand

in d2frem pr

d2PrC
produces negative value which confirms the maximality of frem pr.

On solving the Eq. (3.25) for km = 30 and 50 with average degree ⟨k⟩ = 5 we

get PrCrand = 0.63 and 0.59 respectively.

2. The increase in superpeer degree increases the stability of the network even if

peer contribution stays same for both cases. This can be explained with the

help of the Eq. (3.23). Let fr(km) and fr(km + x) (x is a positive integer) be

the percolation threshold for networks with superpeer degree km and km + x

respectively. As x > 0, assuming km >> ⟨k⟩, we get fr(km + x) > fr(km).

Hence increase in superpeer degree increases stability of the network.

Mixed Poisson Networks

In mixed poisson network, let r be the fraction of peers in the network and rest

be superpeers [108]. Superpeer nodes are connected to each other to form an E-R

network [48,49] with average degree ⟨ksp⟩. Similarly peers connected with superpeers

form another E-R graph with an average degree ⟨kp⟩ where ⟨kp⟩ << ⟨ksp⟩. Now

we examine the stability of this kind of superpeer network undergoing churn. In

mixed poisson network, first and second moment of the degree distribution become

⟨k⟩ = r⟨kp⟩+(1−r)⟨ksp⟩ and ⟨k2⟩ = r⟨k2p⟩+(1−r)⟨k2sp⟩ respectively. If k is a random

variable following Poisson distribution then it can be shown that ⟨k2⟩ ≈ ⟨k⟩2 + ⟨k⟩.
Hence according to Eq. (3.17), percolation threshold becomes

fr = 1− r⟨kp⟩+ (1− r)⟨ksp⟩
r⟨kp⟩2 + (1− r)⟨ksp⟩2

(3.26)

Substituting for ⟨kp⟩ from Eq. (3.3), we get

fr = 1− ⟨k⟩r
⟨k⟩2 − 2⟨k⟩(1− r)⟨ksp⟩+ (1− r)2⟨ksp⟩2 + r(1− r)⟨ksp⟩2

(3.27)

Similar to bimodal network, in mixed poisson network also, we calculate the feasible

fraction of peers rc
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Figure 3.5: The above plots represent a comparative study of theoretical and sim-

ulation results of stability for two mixed poisson networks undergoing churn. Here

X-axis represents the fraction of peer nodes (r) in the network and Y-axis represents

the corresponding percolation threshold (fr). We keep the average degree ⟨k⟩ = 5

fixed and vary the mean superpeer degree ⟨ksp⟩ = 30, 50 for two plots.

Feasible fraction of peers : Since the mean peer degree ⟨kp⟩ needs to be > 0 to

be connected in the network therefore

⟨k⟩ − (1− rc)⟨ksp⟩
rc

> 0 (3.28)

⇒ rc > 1− ⟨k⟩
⟨ksp⟩

(3.29)

That means we can form a connected superpeer network with prescribed peer and

superpeer degrees only if the fraction of peers in the network is greater than the fea-

sible peer fraction (rc). For ⟨ksp⟩ = 30, 50 this feasible fraction rr becomes 0.833, 0.90

respectively. Below that fraction, there does not exist any network, therefore our

theoretical analysis as well as simulations are performed with peer fraction r above

the feasible fraction rc.

Using Eq. (3.27), we study the variation of percolation threshold (fr) due to the

change in the fraction of peers (r). We validate the analytically derived result with

the help of simulation. We perform the simulation on two mixed poisson networks

with average superpeer degree ⟨ksp⟩ = 30 and 50, keeping the average degree ⟨k⟩ = 5.

Comparative study reveals that networks having higher superpeer degree exhibit more
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robustness than with lower superpeer degree for any peer-superpeer ratio. It can be

observed from Fig. 3.5 that simulation results match closely with theoretical predic-

tions which shows the success of our theoretical framework.

The comparative study of the bimodal network and mixed poisson network reveals

that both of them exhibit similar behavior in face of degree independent failure.

Hence, in the next section of degree dependent failure, we take bimodal network as

the representative topology.

3.4.3 Stability analysis against degree dependent failure

In p2p networks, the peers (or superpeers) having higher connectivity are much more

stable and reliable than the nodes having lower connectivity. Therefore, probability

of the presence of a node having degree k after this kind of failure is

qk = (1− α

kγ
) (3.30)

Using equations (3.15) and (3.30), we obtain the following critical condition for the

stability of giant component after degree dependent breakdown

⟨k2⟩ − α⟨k2−γ⟩+ α⟨k1−γ⟩ − 2⟨k⟩ = 0 (3.31)

where percolation threshold is

fd =
∞∑
k=0

α

kγ
pk (3.32)

Considering the value of α = 1, where the fraction of nodes removed due to this kind

of failure becomes maximum, the condition for percolation becomes

⟨k2−γ⟩ − ⟨k1−γ⟩ = ⟨k2⟩ − 2⟨k⟩ (3.33)

Thus the critical fraction of nodes removed is given by

fd =
∞∑
k=0

1

kγ
pk (3.34)
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where γ satisfies the Eq. (3.33). Thus from the Eq. (3.33) and (3.34), we can determine

the variation of percolation threshold fd for various networks due to degree dependent

failure. In the next section, we apply this formalism for superpeer networks and

compare with simulation results.

3.4.4 Superpeer networks against degree dependent failure

In bimodal network, r is the fraction of peers in the network having degree kl and

rest are superpeers having degree km where kl << km. In degree dependent failure,

the network percolates if

⟨k2−γ⟩ − ⟨k1−γ⟩ = ⟨k2⟩ − 2⟨k⟩ (3.35)

If the value of γ = γc satisfies this equation then removal of fd =
∑∞

k=0
1

kγc
pk fraction

of nodes destroys the giant component; however for γ > γc, the network survives after

node removal. In most of the commercial superpeer networks like KaZaA [83], peers

are only directly connected to the local superpeer making their degree kl = 1. In

that case, the value of γc which percolates the bimodal network can be derived from

Eq. (3.35) as

γc = 1−
ln ⟨k⟩(km+1)−km−2⟨k⟩

⟨k⟩−1

ln km
(3.36)

We plot the variation of the γc and percolation threshold fd with respect to the

superpeer degree km for various average degree ⟨k⟩(Fig 3.6). It is important to notice

that the increase in the superpeer degree km increases peer fraction r to keep the

average degree ⟨k⟩ fixed. However here we are interested to understand the impact

of superpeer degree upon stability of the networks. It can be observed from Fig. 3.6

that simulation result matches closely with theoretical prediction which shows the

success of our theoretical framework.

Observations

1. It can be easily identified from Fig 3.6, that with the increase of superpeer

degree km, the value of γc that percolates the network decreases. This increases

the necessary fraction of superpeers required to be removed to breakdown the
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Figure 3.6: Change of γc and percolation threshold fd with respect of superpeer

degree km for superpeer networks undergoing degree dependent failure. Here mean

degree ⟨k⟩ varies from 8 to 16. X-axis represents the superpeer degree(km) and Y-axis

represents the corresponding γc and fd.

network. The nature of γc can be approximated by the polynomial a/(x − b)

(0 < a < 1 and b is some positive integer). Thus the decrease of γc follows

hyperbolic curve. Since the increase of km increases the fraction of peers r,

the removal of most of the low degree peers along with a fraction of superpeers

increases the percolation threshold fd.

2. It is interesting to observe that the percolating γc remains quite low and less

than 0.1 for the entire range of km. The reason is that, at smaller values of γc,

the likelihood that a higher fraction of superpeer nodes would be removed is

high. As γ becomes > 0, mainly the lower degree nodes are removed, which are

not so useful to break the network down.

3. Another interesting observation is after a certain threshold km, the curves be-

come parallel to the X-axis and never cut it thus the value of γc is small but

never becomes 0 (in that case fd =
∑∞

k=0
1
k0
pk = 1). This implies that for any

large value of km, although fd becomes significantly large, however it is required

to remove only a part of nodes (and not ‘all’ the nodes) from the network to

dissolve the giant component.
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3.5 Conclusion

The basic contributions of this chapter are two folds; first of all, modeling and formal-

izing various environmental parameters that will be used throughout the thesis and

secondly, development of an analytical framework to analyze the stability of various

p2p networks against peer churn. We model the peer-to-peer network with the help

of probability distribution as well as simulated Gnutella networks from real data and

protocols. In addition, we model peer churn and attacks with the help of various

node removal techniques. We define percolation threshold as the stability metric and

illustrate the procedure to calculate this during simulation.

There have been several interesting observations also which need to be summarized.

The analytical framework as well as simulation results show that superpeer networks

remain robust under user churn. However, when the fraction of superpeers in the

network is less than 5%, the stability of the network sharply decreases for degree

independent failure. This result points to a zone where superpeer networks are most

vulnerable. Similarly, for degree dependent failure, our analysis shows that increase of

superpeer degree improves the stability of the network and the improvement follows

a hyperbolic curve. We introduce a new structural metric called ‘peer contribution’

for more fair analysis and examined its effect upon the stability of the network.

This chapter mainly focuses on the analysis of peer churn on the stability of the

superpeer networks. However, in the next chapter, we perform a comprehensive anal-

ysis on the impact of attacks on the stability of superpeer networks. We develop

another theoretical framework to calculate the degree distribution of the deformed

network after removal of a fraction of nodes along with their adjacent links. There-

after the degree distribution of the deformed network is utilized to derive the critical

condition for the stability of the network. We show that the method developed in

the next chapter is more generalized so that it is able to characterize the impact of

various real network issues (like network size, degree-degree correlation etc) on the

stability of the network.





Chapter 4

Attack and stability of superpeer

networks

In the previous chapter, we have reported the impact of peer churn on superpeer

network with the help of an analytical framework. In this chapter, we propose an-

other analytical framework to understand the impact of different types of attacks on

superpeer networks. From Chapter 4, we can calculate the stability of uncorrelated

large graphs in the same fashion as the previous, however this is more sophisticated

than the framework of Chapter 3 in different aspects.

1. In addition to the stability of overall network, the framework of this chapter

gives more insights regarding the topology of the network. For instance, the

removal of nodes along with their adjacent edges changes the topology of the

network. The degree distribution of this deformed network after attack can be

calculated with the help of this framework.

2. There are many results that have been derived for infinite networks (similar

to previous framework), however, little is known about the stability of finite

size networks. The framework developed in this chapter sheds some light on

finite size network by proposing an alternative expression for the percolation

threshold.

79
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3. Most of the real world networks like Gnutella exhibit degree-degree correlation

in the topological structure. Hence understanding the stability of these networks

needs to include degree-degree correlation in the calculation (which was not

possible in the previous framework). We show that, a little modification of the

current framework makes it suitable for the analysis of correlated networks also.

The chapter is organized in the following way. In section 4.1, we develop the analyt-

ical framework for stability analysis. In section 4.2 we use the framework to analyze

the stability of superpeer networks in face of degree independent attack as well as

degree dependent attack modeled in Chapter 3. We show that the degree dependent

attack can be used as an unified attack model as other node disturbances may be re-

produced by regulating some parameter [109]. We validate our theoretical framework

with the help of stochastic simulation. The validation is done in two ways depending

upon the generation of superpeer networks, as illustrated in Chapter 3. We start

with simple models of superpeer networks, namely bimodal network and mixed pois-

son network which are simple enough to understand and analyze while at the same

time they capture the essential features of the superpeer networks (section 4.2.2).

Our framework unfolds various issues such as (i) the available knowledge regarding

the topology that helps attackers to breakdown the network (section 4.2.3) (ii) the

effect of finiteness of network size on the network stability (section 4.2.4). After-

wards we implement the attack dynamics on the commercial peer-to-peer networks

namely Gnutella (section 4.3). Gnutella network is simulated both from the boot-

strapping protocol followed by the different Gnutella clients like limewire, mutella

etc [82] and from the topological snapshots obtained from [1]. We identify some devi-

ations between theoretical and simulation results due to the presence of degree-degree

correlation in Gnutella network. In section 4.4, we further refine our framework to

include the degree-degree correlation factor and show that the modified theoretical

model gives good agreement with simulated results.



4.1 Development of the analytical framework 81

4.1 Development of the analytical framework

In this section, we present the detail derivation of the critical condition for measuring

the stability of peer to peer networks undergoing any kinds of attacks [107]. We start

out by repeating some definitions mentioned before. Let pk be the probability of

finding a node chosen uniformly at random with degree k. Let fk be the probability

that a node of degree k is removed after the attack. Correspondingly 1 − fk is the

probability that a node of degree k survives the attack. In our framework, degree

distribution pk models the ensemble of p2p topologies and fk models the disruptive

events that take place in the network. We are going to establish the relationship

between stability, pk and fk. This is done as a two step process; in the first step, we

calculate the degree distribution of the deformed network after attack. Subsequently

in the second step, we use this expression to derive the critical condition of stability

of p2p networks against attack.

4.1.1 Deformed topology after attack

In this subsection, we theoretically compute the degree distribution of the deformed

topology p′k after performing an attack on the p2p network of size N with initial

degree distribution pk. The attack in the network can be thought of in the following

way. The first step in the attack is to select the nodes that are going to be removed

according to the probability distribution fk. After the selection of the nodes, we

divide the network into two subsets, one subset contains the surviving nodes (S)

while the other subset comprises of the nodes that are going to be removed (R).

This is illustrated in Fig. 4.1. The degree distribution of the surviving subset S is

(1 − fk)pk while the subset of nodes to be removed R (that is the edges connecting

set S and set R) still exist. However, when these nodes are actually removed, the

degree distribution of the surviving nodes S is changed due to the removal of the E

edges that run between these two subsets.

To calculate the degree distribution after the attack, we have to estimate E. The
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S R

E

Figure 4.1: The scheme illustrates an attack as consisting of two steps: selection of

nodes to be removed (set of removed nodes, R), and cutting of the edges E that run

from the surviving nodes (set of surviving nodes, S) to the set of removed nodes R.

As the scheme shows, the attack affects the degree of the surviving nodes.

total number of edge tips1 in the surviving subset S including E links that are going

to be removed can be expressed by the sum
∑∞

j=0 j nj (1− fj) where nj = Npj is the

total number of nodes in the network having degree j. Now knkfk gives the total

number of edge tips connected with all the k degree nodes in the removed subset R.

Therefore
∑

k knkfk becomes the total number of tips in R. Hence the probability

of a randomly chosen tip of an edge to be removed becomes
∑

k knkfk∑
k knk

. Subsequently

the probability of a randomly chosen tip of an edge to be removed (i.e. member of

set R) and another tip of that edge being connected to either set S or R becomes∑
k knkfk∑
k knk−1

(since a tip cannot be connected to itself). As the network is uncorrelated,

it is equally probable that the other end of the removed tip (member of set R) is

connected to the nodes of set S or set R. Assuming this unbiasness, the total number

of edge tips in set R connected to the nodes of the set S can be expressed as

E =

( ∑∞
i=0 i ni fi

(
∑∞

k=0 k nk)− 1

) ∞∑
j=0

j nj (1− fj) (4.1)

Knowing this, the probability ϕ of finding an edge in the surviving subset S, that is

1We assume that each edge consists of two end tips. Hence the total number of tips in the network

is twice the number of edges.
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connected to a node of the other subset R can be expressed as

ϕ =
E∑∞

i=0 i ni (1− fi)
=

E

N
∑∞

i=0 i pi (1− fi)
=

∑∞
i=0 i pi fi

(
∑∞

k=0 k pk)− 1/N
. (4.2)

In large scale networks, limN→∞ ϕ =
∑∞

i=0 i pi fi∑∞
k=0 k pk

The probability psq of finding a node with degree q in the surviving subset S (before

cutting the E edges) simply becomes

psq =
(1− fq)pq

1−
∑∞

i=0 pifi
. (4.3)

The removal of nodes can only lead to a decrease in the degree of a survived

node. If we find a node of degree k that has survived, it can be due to the fact that

originally its degree was k + q and k of its edges survived while q (q may be zero

also) got removed. For example, the fraction of nodes having degree k after attack

i.e. p′k is given by the fraction of psk nodes, who did not lose any link, and a fraction

of psk+1 nodes who lost one link but rest k links survived, a fraction of psk+2 nodes

who lost two links but rest k links survived and so on. Hence using the concept of

binomial distribution and from the equations (4.2) and (4.3), we obtain the following

expression for p′k:

p′k =
∞∑
q=k

(
q

k

)
ϕq−k(1− ϕ)k psq . (4.4)

Eq. (4.4) can be iteratively evaluated by replacing pk with p′k into Eqs. (4.1) to (4.4).

4.1.2 Critical condition for stability

In this section, we derive the critical condition for stability of the peer to peer networks

after attack. In order to do that, we utilize the expression of the deformed degree

distribution p′k after removal of nodes. According to [28, 115], the critical condition

for the stability of giant component can be expressed as

κ′ =
⟨k2⟩′

⟨k⟩′
> 2 , (4.5)
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where ⟨k⟩′ and ⟨k2⟩′ refer to the first and second moments of the degree distribution

after the attack. The critical condition κ′ = 2 determines the point at which the

network breaks down. To compute ⟨k⟩′ and ⟨k2⟩′ of the modified network, we utilize

the generating function G0(x) =
∑

k p
′
k x

k, which reads:

G0(x) =
∞∑
k=0

∞∑
q=k

(
q

k

)
ϕq−k(1− ϕ)kpsq x

k . (4.6)

After exchanging the order of the sum, the Binomial theorem can be applied, and we

obtain:

G0(x) =
∞∑
k=0

psk ((x− 1)(1− ϕ) + 1)k . (4.7)

From Eq. (4.7), the first two moments can be easily computed as ⟨k⟩′ = dG0(1)/dx

and ⟨k2⟩′ = d2G0(1)/dx
2 + dG0(1)/dx, and the critical condition given by Eq. (4.5)

takes the form:

(1− ϕ)
⟨k2⟩ −

∑∞
q=0 fq pq q

2

⟨k⟩ −
∑∞

q=0 fq pq q
+ ϕ = 2 , (4.8)

where ⟨k⟩ and ⟨k2⟩ refer to the first and second moments of the degree distribution

before the attack. Replacing ϕ by Eq. (4.2) and assuming N >> 1, we obtain

∞∑
k=0

kpk(k(1− fk)− (1− fk)− 1) = 0 (4.9)

which is the critical condition of stability in any large scale uncorrelated peer to peer

networks. Comparing Eqs. 4.9 and 3.15, we conclude that, this critical condition is

exactly same as that developed in Chapter 3.

4.2 Effect of attacks upon the superpeer networks

In this section, we formally analyze the effect of attacks on the superpeer networks

with the help of the developed framework. Two kinds of attacks, namely deterministic

attack and degree dependent attack are discussed separately. The attack models are

already described in Chapter 3. First of all, we show the effect of these attacks on

the topological deformation of the network. This phenomenon has been modeled
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Figure 4.2: Topological deformation of the superpeer networks in face of deterministic

attack. After the attack, 10% of nodes are removed. This 10% of nodes correspond to

the 50% of the superpeer nodes whose degree is 20. The initial bimodal network and

deformed network after attack are shown in the figure. The theoretically calculated

degree distribution (p′k) is verified through simulation.

using Eq. (4.4) and validated through simulations. Next we evaluate the stability of

superpeer networks against these kinds of attacks and establish a relationship between

them.

4.2.1 Analysis of deterministic attack

We consider superpeer networks with peer degree kl = 2 and superpeer degree km = 20

and assume that 80% of nodes in the network are peers. Suppose 10% of nodes

are removed through deterministic attack which signifies that 50% of superpeers get

removed. We calculate the new degree distribution after attack (p′k) by Eq. (4.4) and

compare the results with simulation. Fig. 4.2 shows the good agreement between the

theoretical and simulation results which confirms the success of our model.

Stability of the superpeer networks is challenged by attack on prominent peers or

superpeers. In this section, we analyze the effect of this kind of targeted attack upon

superpeer networks where r is the fraction of peers and rest are superpeers. In the

case of targeted attack two cases may arise:



86 Chapter 4 Attack and stability of superpeer networks

Case 1 Removal of a fraction of superpeers is sufficient to disintegrate the network.

Case 2 Removal of all the superpeers is not sufficient to disintegrate the network.

Therefore, we need to remove some of the peer nodes along with the super-

peers.

We analyze these two cases separately with the help of our analytical framework.

First we consider the bimodal networks as our superpeer networks model. Next we

extend the analysis for the more sophisticated mixed poisson networks.

Bimodal Networks

From Eq. (4.9) the critical condition for the stability of the superpeer networks can

be rewritten as ∑
k=kl,km

k(k − 1)pkqk = ⟨k⟩ (4.10)

The equation can be further expanded as below to differentiate between peers and

superpeers

kl(kl − 1)pklqkl + km(km − 1)pkmqkm = ⟨k⟩ (4.11)

Case 1: In this case, removal of a fraction of superpeers is sufficient to disintegrate

the network. If fsp be the critical fraction of superpeer nodes, removal of which

disintegrates the giant component, then qk = 1 for k = kl and qk = 1−fsp for k = km.

Hence according to Eq. (4.11),∑
k=kl

k(k − 1)pk +
∑
k=km

k(k − 1)pk(1− fsp) = ⟨k⟩

⇒ fsp = 1− ⟨k⟩ − kl(kl − 1)pkl
km(km − 1)pkm

As the fraction of superpeer nodes in the network is (1−r), then percolation threshold

for case 1 becomes ftar = (1− r)× fsp

⇒ ftar = (1− r)

(
1− ⟨k⟩ − kl(kl − 1)r

km(km − 1)(1− r)

)
(4.12)
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Figure 4.3: Stability of the superpeer networks in face of deterministic attack (Com-

parative study between theoretical and simulation results). Here X-axis represents

the peer degree (kl) and Y-axis represents the corresponding percolation threshold

(ftar). We keep the average degree ⟨k⟩ = 10 and mean superpeer degree ⟨ksp⟩ = 50

fixed. Case 1 and case 2 of the theoretical model represent Eqs. (4.12) and (4.15)

respectively.

Case 2: Here we have to remove fp fraction of peer nodes along with all the superpeers

to breakdown the network. Therefore qk = 1 − fp for k = kl and qk = 0 for k = km.

Hence according to Eq. (4.11),

kl(kl − 1)pkl(1− fp) = ⟨k⟩ (4.13)

⇒ fp = 1− ⟨k⟩
kl(kl − 1)pkl

(4.14)

Therefore the total fraction of nodes required to be removed to disintegrate the net-

work for case 2 becomes ftar = rfp + (1− r).

⇒ ftar = r

(
1− ⟨k⟩

kl(kl − 1)r

)
+ (1− r) (4.15)

Transition point: The transition from case 1 to case 2 can be easily marked by

observing the value of percolation threshold ftar. While calculating using Eq. (4.12)
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(case 1), if the value of ftar exceeds the fraction of superpeers in the network (1− r),

it indicates that removal of all the superpeers is not sufficient to disrupt the network.

Hence subsequently we enter into case 2 and start using Eq. (4.15) to find percolation

threshold.

We validate our theoretical model of attack on superpeer network with the help of

simulation. During simulation, initially only high degree superpeer nodes in the net-

work are removed gradually until the percolation point is reached. If the percolation

point is not reached even after removing of all the superpeers, we remove a fraction

of peers along with the superpeers to breakdown the network. We perform each ex-

periment for 500 times and take the average of the percolation threshold obtained in

each of them. Superpeer networks with average degree ⟨k⟩ = 10 and superpeer degree

km = 50 are considered for case study. We increase the peer degree kl gradually (the

peer fraction changes accordingly) and observe the change in the percolation thresh-

old ftar (Fig. 4.3).

Observations:

a. In the networks with peer degree kl = 1, 2 and 3, the removal of only a fraction of

superpeers causes breakdown thus making these networks more vulnerable. In fact,

increase of peer degree from 1 to 2 and 3 further reduces the fraction of superpeers in

the network. Subsequently, removal of only a small fraction of superpeer nodes causes

breakdown of the network, hence makes networks with kl = 2, 3 more vulnerable. In

general, the vulnerability of a network against attack increases with the network het-

erogeneity. Since the increase in peer degree reduces the network heterogeneity, it

would be expected that the attack vulnerability of a network will reduce with the

increase in peer degree. But the opposite happens here. The slope of the Eq. (4.12)

with respect to kl becomes

△ftar
△kl

=
1

M2

(M1 − klM3 +M4k
2
l )− (M5 − kl)(2M5kl −M3)

(M5 − kl)2
(4.16)

whereM1,M2,M3,M4,M5 are constants dependent on superpeer degree km and aver-

age degree ⟨k⟩. The slope of the curve at the points kl = 1, 2 and 3 becomes negative

which signifies that the attack vulnerability of the network increases with kl. Along

with the theoretical justification, this can also be explained by looking into the mi-

cro dynamics. In this zone (at kl = 2, 3), although peers have a larger share in the
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Figure 4.4: The plot represents the impact of peer contribution PrC upon the stability

of the network against attack. fp represents the fraction of peers required to be

attacked to dissolve the network and ftar indicates the corresponding percolation

threshold.

network, yet it is not large enough to form effective connections within themselves.

Therefore the stability of the network is still entirely dependent on the high degree

superpeers, hence now attacking even a smaller fraction breaks down the network.

b. However as peer degree increases beyond 4, the transition from case 1 to case 2

occurs. In this region a fraction of peers is required to be removed even after removal

of all the superpeers to dissolve the network. The slope of the Eq. (4.15) with respect

to kl becomes
△ftar
△kl

=
k

k2l (kl − 1)
+

k

kl(kl − 1)
(4.17)

Hence the slope of the Eq. (4.15) becomes positive for any peer degree kl > 1 which

indicates that stability of the network increases with the increase of peer degree. In

practice, the high degree peers connect among themselves and they are not entirely

dependent on superpeers for connectivity. This results in the steep increase of stability

of the network with peer degree kl ≥ 5.

Impact of peer contribution

Similar to churn, we investigate the impact of (pure) peer contribution upon stability

of the network due to attack. In order to understand the influence of the degree of pure

peers, we consider the networks with kl = 1, 3, 5. Three sets of networks are generated

having kl = 1, 3 and 5, respectively, for individual peer contribution PrC (0.1 ≤
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PrC ≤ 0.9). In order to do that, we choose fraction of peers r uniformly at random and

adjust superpeer degree km accordingly to keep the peer contribution PrC and peer

degree kl constant. This procedure is followed to generate one hundred networks for

each set. We restrict superpeer degree km ≥ 20 in order to generate realistic superpeer

networks. We theoretically compute the percolation threshold (ftar) and fraction of

peers and superpeers required to be removed (fp and fsp respectively) for individual

network and calculate their average for individual kl. This expected fraction of peers

required to be removed fp and percolation threshold ftar is plotted with respect to

the peer contribution PrC (Fig. 4.4). The theoretical model is sufficient for analysis

as the model has been already validated through simulation.

Observations:

1. It can be observed from Fig. 4.4 that superpeer networks having peer degree

kl = 1 can be disintegrated without attacking peers at all for any peer contri-

bution PrC . This kind of attack belongs to case 1 of the attack model.

2. The peers of the superpeer networks having peer contribution PrC ≤ 0.2 does

not have any impact upon the stability of the network. This is true for low as

well as high degree peers.

3. The influence of high degree peers increases with the increase of peer contribu-

tion. At PrC = 0.3, a fraction of peers is required to be removed to disintegrate

the networks having peer degree kl = 5. The impact of high degree peers

upon the stability of the network becomes more eminent as peer contribution

PrC ≥ 0.5. In this region, a significant fraction of peers is required to be re-

moved for all the networks having peer degree kl = 3, 5. This kind of attack

belongs to case 2 of the attack model.

4. Increase in peer contribution PrC ≥ 0.4 brings the percolation threshold ftar

and fraction of peers needed to be attacked fp close to each other which implies

that stability of these networks is primarily dependent upon the stability of the

peers.

5. It is interesting to observe that peer contribution PrC has two opposite effects

upon stability of the networks depending on the peer degree kl. The perco-
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lation threshold ftar increases with peer contribution PrC for kl = 3, 5, but

gradually reduces for kl = 1. The reason behind this is, stability of the net-

works with peer degree kl = 1 is entirely dependent upon superpeers. Since

increase in peer contribution decreases superpeer contribution, it decreases sta-

bility of these networks also. On the other hand, peers having degree kl ≥ 3

have many connections among themselves, hence stability of these networks is

more dependent upon peer contribution. Therefore, percolation threshold ftar

increases with peer contribution PrC .

6. Peer degree kl = 3 exhibits some kind of trade off between the impact of peer and

superpeer contribution upon stability. Superpeer contribution becomes more

predominant for lower values of PrC (PrC < 0.5) which degrades the percolation

threshold against attack. However as peer contribution PrC increases beyond

0.5, superpeer contribution reduces hence attacking peers along with superpeers

is necessary to destroy the network. This increases the percolation threshold

ftar i.e. the stability of the network as well.

Mixed Poisson Networks

Similar to bimodal networks, in mixed poisson networks also we have two different

cases. We analyze these two cases separately with the help of our analytical frame-

work. From Eq. (4.9) the critical condition for the stability of the giant component

can be rewritten as
∞∑
k=0

k(k − 1)pkqk = ⟨k⟩

The equation can be further expanded as below to differentiate between peers and

superpeers
kmax−1∑
k=0

k(k − 1)pkqk +
∞∑

k=kmax

k(k − 1)pkqk = ⟨k⟩ (4.18)

where all the nodes having degree less than kmax are peers and rest are superpeers.

Case 1: In this case, removal of a fraction of superpeers is sufficient to disintegrate

the network. If fsp be the critical fraction of superpeer nodes, removal of which

disintegrates the giant component then qk = 1 for k < kmax and qk = 1 − fsp for
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k ≥ kmax. Hence according to Eq. (4.18),

kmax−1∑
k=0

k(k − 1)pk +
∞∑

k=kmax

k(k − 1)pk(1− fsp) = ⟨k⟩

⇒ fsp = 1− ⟨k⟩ −
∑kmax−1

k=0 k(k − 1)pk∑∞
k=kmax

k(k − 1)pk

As the fraction of superpeer nodes in the network is (1−r), then percolation threshold

for case 1 becomes ft = (1− r)× fsp

⇒ ft = (1− r)

(
1− ⟨k⟩ −

∑kmax−1
k=0 k(k − 1)pk∑∞

k=kmax
k(k − 1)pk

)

= (1− r)

1−
⟨k⟩ − r

∑⟨kp⟩+δ
k=0 k(k − 1) ⟨kp⟩

ke−⟨kp⟩

k!

(1− r)
∑∞

k=⟨kp⟩+δ+1 k(k − 1) ⟨ksp⟩
ke−⟨ksp⟩

k!

 (4.19)

where mean peer degree ⟨kp⟩ = ⟨k⟩−(1−r)⟨ksp⟩
r

and we choose suitable value of δ depend-

ing on the standard deviation of the Poisson distribution. δ ensures the inclusion of

all peer and superpeer degrees around their respective means ⟨kp⟩ and ⟨ksp⟩ during

the calculation of above equations.

Case 2: Here we have to remove fp fraction of peer nodes alongwith all the super-

peers to breakdown the network. Therefore qk = 1 − fp for k < kmax and qk = 0 for

k ≥ kmax. Hence according to Eq. (4.18),

kmax−1∑
k=0

k(k − 1)pk(1− fp) = ⟨k⟩

⇒ fp = 1− ⟨k⟩∑kmax−1
k=0 k(k − 1)pk

Therefore the total fraction of nodes required to be removed to disintegrate the net-

work for case 2 becomes ft = rfp + (1− r).

⇒ ft = r

(
1− ⟨k⟩∑kmax−1

k=0 k(k − 1)pk

)
+ (1− r)

= r

(
1− ⟨k⟩

r
∑⟨kp⟩+δ

k=0 k(k − 1) ⟨kp⟩
ke−⟨kp⟩

k!

)
+ (1− r) (4.20)
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Figure 4.5: The above plot represents the behavior of the mixed poisson network in

face of deterministic attack found experimentally and compares it with the proposed

theoretical model. Here X-axis represents the fraction of peer nodes (r) that exist in

the network and Y-axis represents the corresponding percolation threshold (ft). We

keep the average degree ⟨k⟩ = 5 and mean superpeer degree ⟨ksp⟩ = 30 fixed. Case 1

and case 2 of the theoretical model represent Eqs. (4.19) and (4.20) respectively.

where mean peer degree ⟨kp⟩ = ⟨k⟩−(1−r)⟨ksp⟩
r

.

Transition point: The transition from case 1 to case 2 can be easily marked by

observing the value of percolation threshold ft. While calculating using Eq. (4.19)

(case 1), if the percolation threshold ft exceeds the fraction of superpeers in the

network (1 − r), it indicates that removal of all the superpeers is not sufficient to

disrupt the network. Hence subsequently we enter into case 2 and start using Eq.

(4.20) to find percolation threshold.

We validate our theoretical model of attack on mixed poisson network with the help

of simulation. In simulation, we consider a mixed poisson network with average

degree ⟨k⟩ = 5 and mean superpeer degree ⟨ksp⟩ = 30. We increase the fraction of

peers gradually keeping average degree ⟨k⟩ = 5 fixed and observe the change in the

percolation threshold ft (Fig. 4.5). It is important to note that when the fraction of

superpeers in the network is high, it is possible to breakdown the network only by

removing a fraction of superpeers and modeled as case 1 (Eq. (4.19)). But when the

fraction of superpeers is below some threshold, a fraction of peers should be attacked

alongwith the superpeers to stop percolation in the network and modeled as case 2
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(Eq. (4.20)).

Summarization: In this section, the impact of deterministic attack on the stability

of superpeer networks has been analyzed. We have shown that the networks having

peer degree kl ≤ 3 are very much vulnerable and removal of only a small fraction of

superpeers causes the breakdown of the network. But as the peer degree increases, the

stability of the network increases as well. We have observed that peer contribution

plays a major role in the network stability, specially for the networks with high peer

degree (say kl ≥ 3). In this case, a fraction of peers are required to be removed

along with all the superpeers in the network. However, depending upon the peer

degree kl, peer and superpeer contributions exhibit two opposite forces in percolation

threshold due to their individual influence on the connectivity of the network. This

phenomenon becomes much more predominant for the networks with kl ≥ 3.

Mixed poisson network is modeled as the superposition of two E-R graphs (with

Poisson degree distributions) with two different average degrees. The major fraction

of nodes in an E-R graph has degree close to the mean degree. Hence an E-R graph

following Poisson degree distribution with mean degree ⟨k⟩ can be approximated by

a regular graph with degree k. In order to simplify our calculation, we extend this

approximation for the mixed poisson network. In this approximation, we model the

superpeer networks using bimodal degree distribution instead of mixed poisson. Rig-

orous simulation results show that both of these networks namely bimodal networks

and mixed poisson networks exhibit similar qualitative behavior under various node

disturbances like failure and attack. We henceforth use bimodal network as the rep-

resentative superpeer network for the analysis of degree dependent attack; since it is

simple enough to understand, at the same time it captures the essential features of

superpeer networks.

4.2.2 Analysis of degree dependent attack

In this kind of attack, the probability of removal of a node of degree k is directly

proportional to kγ where γ ≥ 0 is a real number and represents the information

available to the attacker about the topological structure of the network. Similar to the
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deterministic attack, in this case also we compute the deformed degree distribution

p′k after attack and validate the results through simulations. Without the loss of

generality, we use bimodal network as the representative topology to model superpeer

networks. We consider a superpeer network with peer degree kl = 2 and superpeer

degree km = 10 where 80% of the nodes are peers. The probability of removal of

a node is proportional to its degree, i.e. fk = k
km+1

(so γ = 1). The theoretically

computed p′k (using Eq. (4.4)) and simulation results are shown in Fig. 4.6. Next
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Figure 4.6: Topological deformation of the superpeer networks in face of degree de-

pendent attack. The nodes are removed from the network with fk =
k

km+1
. The initial

bimodal network and the deformed network after attack p′k are shown in the figure.

we analyze the effect of degree dependent attack upon the stability of the superpeer

networks. With proper normalization, probability of removal of a node having degree

k becomes fk =
kγ

C
where C is the normalization constant.

As mentioned in bimodal degree distribution, let r be the fraction of peers with degree

kl while rest are superpeers of degree km. If ⟨k⟩ is the average degree of the network,
then

pkl = r =
km − ⟨k⟩
km − kl

pkm = (1− r) =
⟨k⟩ − kl
km − kl

From Eq. (4.9) the critical condition for the stability of the giant component can be

rewritten as ∑
k=kl,km

k(k − 1)pk(1− fk) = ⟨k⟩
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⇒ ⟨kγ+2⟩ − ⟨kγ+1⟩ = C(⟨k2⟩ − 2⟨k⟩)

⇒ rkγ+1
l (kl − 1) + (1− r)kγ+1

m (km − 1) =

C(⟨k⟩(km + kl)− km − 2⟨k⟩) (4.21)

where θth moment of the bimodal degree distribution can be written as ⟨kθ⟩ = kθmpkm+

kθl pkl . The solution of Eq. (4.21) yields a particular value of γ, say γc (termed as

critical exponent) and the percolation threshold becomes

fγc
c = r

kγcl
C

+ (1− r)
kγcm
C

(4.22)

In order to evaluate the disintegration point, proper assignment of the value of nor-

malizing constant C is necessary. Since fk should be ≤ 1 ∀k, hence the minimum

value of C = kγm. Assuming this condition, Eq. (4.21) becomes

rkγ+1
l (kl − 1) + (1− r)kγ+1

m (km − 1) ≥

kγm(⟨k⟩(km + kl)− km − 2⟨k⟩) (4.23)

The solution set of the above inequality (say Sγc) can be bounded (where 0 ≤ γc ≤ γbdc )

or unbounded (where 0 ≤ γc ≤ +∞). Each critical exponent γc ∈ Sγc specifies the

fraction of peers and superpeers required to be removed to breakdown the network.

Assuming equality of Eq. (4.23) and hence obtaining minimum value of C, each γc

results in the corresponding normalizing constant

Cγc =
rkγc+1

l (kl − 1) + (1− r)kγc+1
m (km − 1)

⟨k⟩(km + kl)− km − 2⟨k⟩
(4.24)

Hence the fraction of peers and superpeers need to be attacked are

fγc
p =

kγcl
Cγc

fγc
sp =

kγcm
Cγc

(4.25)

respectively and the total fraction of removed nodes fγc
c is obtained from Eq. (4.22).

The fγc
c depends upon the critical exponent γc ∈ Sγc and normalizing constant Cγc .

The nature of the solution set Sγc has profound impact upon the behavior of fγc
p ,

fγc
sp as well as fγc

c . The breakdown of the network can be due to one of the three

situations noted below.
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Figure 4.7: Case 1 of the degree dependent attack. The superpeer degree km is

adjusted with the change of peer fraction r to keep the average degree fixed.

1. The removal of all the superpeers along with a fraction of peers.

2. The removal of only a fraction of superpeers.

3. The removal of some fraction of both superpeers and peers.

The above mentioned three cases are discussed one by one with example.

Case 1 : Removal of all superpeers along with a fraction of peers

Networks having bounded solution set Sγc where 0 ≤ γc ≤ γbdc exhibit this kind

of behavior at the maximum value of the solution γc = γbdc . Here the fraction of

superpeers removed become f
γbd
c

sp = 1 and fraction of peers removed f
γbd
c

p =
k
γbdc
l

C
γbdc

. We

consider superpeer networks with superpeer degrees km = 30, 40 and average degree

⟨k⟩ = 10 and theoretically study the stability of the networks due to the change in

the peer fraction r. The results of the case study are noted in Fig. 4.7. It can be

observed that the solution set of these networks upto a threshold peer fraction rc,



98 Chapter 4 Attack and stability of superpeer networks

(rc = 0.78 and 0.84 for km = 30 and km = 40 respectively) remains unbounded. The

bounded solution set is observed for the networks with r ≥ rc and the behavior of

the boundary critical exponent γbdc due to the change of peer fraction r is shown in

Fig. 4.7(a). The fraction of peers and superpeers needed to be attacked for these

networks is presented in Fig. 4.7(b). These networks exhibit the properties of case

1 of degree dependent attack, hence the removal of all the superpeers is necessary to

disintegrate the network along with a fraction of peers. Fig. 4.7(b) also represents

some instances of case 2 where only some fraction of superpeers are needed to be

removed (r < rc).

The main findings are listed below

a. Impact upon the fraction of peers removed

The increase in peer fraction slowly decreases γbdc (Fig. 4.7(a)) which in turn gradually

increases the fraction of peers removed f
γbd
c

p (Fig. 4.7(b)). The amount of removal of

peers also depends upon the superpeer degree km. The increase in the superpeer

degree reduces the role of peers in determining the stability of the network. Hence

fraction of peers required to be removed f
γbd
c

p reduces with increase in km.

b. Impact upon percolation threshold

Let the percolation threshold for the networks having peer fraction r1 and r2 (where

r1 < r2) be f
γbd
c

c1 and f
γbd
c

c2 respectively. Hence the percolation threshold for these two

networks are

fγbd
c

c1
= r1f

γbd
c

p1
+ (1− r1) (4.26)

fγbd
c

c2
= r2f

γbd
c

p2
+ (1− r2) (4.27)

Therefore the change in the percolation threshold when the peer fraction changes

from r1 to r2 is

fγbd
c

c1
− fγbd

c
c2

= △fγbd
c

c = r1f
γbd
c

p1
− r2f

γbd
c

p2
− (r1 − r2)

= △
(
rfγbd

c
p

)
−△r (4.28)

The Eq. (4.28) shows that the change of percolation threshold f
γbd
c

c is influenced by

two opposite forces; on one hand the increase of peer fraction r (from r1 to r2) in

the network makes △r < 0 that increases △fγbd
c

c . On the other hand, this increase

in r increases the fraction of peers required to be removed (Fig. 4.7(b)) which makes
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△
(
rf

γbd
c

p

)
< 0. Depending upon the weightage of influence, △fγbd

c
c (and subsequently

f
γbd
c

c ) either decreases or increases. For r < rc, the rf
γbd
c

p remains 0, hence f
γbd
c

c

decreases with r. When peer fraction r ≥ rc, due to the finite value of f
γbd
c

p , the f
γbd
c

c

increases.

Case 2 : Removal of only a fraction of superpeers

Some networks have unbounded solution set Sγc where 0 ≤ γc ≤ +∞. As γc → ∞,

fγc
p converges to 0 and fγc

sp converges to some x where 0 < x < 1. This illustrates the

case 2 of degree dependent attack where removal of only a fraction of superpeers is

sufficient to disintegrate the network. The case study is performed with a network

having superpeer degree km = 25, average degree ⟨k⟩ = 5 and peer degree kl = 2. The

results are validated with the help of simulation. We plot the theoretically calculated

(Eqs. (4.24), (4.25)) fraction of peers and superpeers required to be removed to

breakdown the network for each critical exponent γc (Fig. 4.8). In simulation, we

initially remove the fraction of superpeers fγc
sp which has been predicted theoretically

and then start removing peers gradually to breakdown the network. The minimum

peer fraction, removal of which causes the breakdown of the network corresponds to

the simulated fγc
p . We perform the simulation on graphs of 5000 nodes and repeat

each experiment for 500 times and take the average of the removed peer fraction. We

compare simulated results with theoretically calculated fγc
p (Fig. 4.8). The interesting

findings are noted below.

a. The fraction of peers removed fγc
p gradually decreases with the increase of the

critical exponent γc, which in turn decreases the value of fγc
c . As γc → ∞, the

fγc
p → 0 with fγc

sp → x (where 0 < x < 1) and fγc
sp , f

γc
c both converges to some steady

value. This signifies that the removal of only a fraction of superpeers is sufficient to

breakdown the network (Fig. 4.8).

b. In Fig. 4.7(a), the nonexistence of the boundary critical exponent γbdc for the

networks having peer fraction r < rc signifies that the solution set of these networks

is unbounded and the percolation process belongs to case 2. It can be observed that

the fraction of peers required to be removed for these networks becomes zero (Fig.

4.7(b)) and removal of only a fraction of superpeers disintegrates the network.
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Figure 4.8: The above plot illustrates the case 2 of degree dependent attack.

c. It is important to note that removal of only a fraction of superpeers is sufficient to

disintegrate any network with peer degree kl = 1 and 2 irrespective of the superpeer

degree and its fraction. Mathematically it can be explained as follows. For kl ≤ 2,

2kl ≥ k2l

⇒ 2rkl ≥ rk2l

⇒ (1− r)km + 2rkl − rk2l ≥ 0

⇒ (1− r)km(km − 1) ≥ ⟨k⟩(km + kl)− km − 2⟨k⟩

⇒ rkγ+1
l (kl − 1) + (1− r)kγ+1

m (km − 1) ≥

kγm(⟨k⟩(km + kl)− km − 2⟨k⟩)

This is exactly the inequality that we get in Eq. 4.23. This inequality is essentially

the condition for breakdown of the superpeer network. Since the above inequality

holds for any values of γ, it indicates that any network with kl = 1, 2 has unbounded

solution set.

Case 3 : Removal of some fraction of both peers and superpeers

Degree dependent attack allows to disintegrate the network by removing a fraction of

both peers and superpeers. Intermediate critical exponents (γc ∈ Sγc and γc ̸= γbdc )
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Figure 4.9: The above plot illustrates the case 3 of the degree dependent attack.

signify the fractional removal of both peers and superpeers. We calculate the amount

of peers and superpeers needed to be removed to dissolve the network due to the

change in γc. We deduce the results for a network having superpeer degree km = 25,

average degree ⟨k⟩ = 5 and peer degree kl = 3. Results are also validated with the

help of simulation (Fig. 4.9). The simulation set up is same as that described for case

2 of the degree dependent attack.

Observations:

a. Our analytical results show that this network has bounded solution set Sγc of the

inequality (4.23) and all the critical exponents γc less than the boundary critical expo-

nent γbdc = 1.171 results in this kind of breakdown. It is evident from both theoretical

and simulation results that the removal of any combination of fγc
p , f

γc
sp (obtained from

the curves in Fig. 4.9) where 0 ≤ γc < γbdc , results in the breakdown of the network.

b. Networks with unbounded solution set (Fig. 4.8) have finite values of γc (γc < 2)

where the removal of both fraction of peers and superpeers are necessary to disinte-

grate the network.

Summarization: In this section, the impact of degree dependent attack on the

stability of the superpeer networks has been discussed in details. We have formulated

the critical condition for network stability and subsequently obtained the critical ex-

ponent γc. This critical exponent γc and the normalizing constant Cγc determine the

amount of peers and superpeers required to be removed to breakdown the network.

Interestingly, we also find that the removal of only a fraction of superpeers is suffi-
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Figure 4.10: The above plot illustrates the change in percolation threshold fc with

the change of attack exponent γ. Three different scale free networks (pk ∼ k−α)

with α = 2, 2.5 and 3 have been considered. Curves represent the theoretical results

whereas the symbols show the simulation results. The agreement between theoretical

and simulation results (with N = 105) shows the success of Eq. (4.31). The dashed

lines indicate the line of convergence of fc calculated using Eq. (4.31) at γ → ∞.

cient to disintegrate any network with peer degree kl = 1 and 2 irrespective of the

superpeer degree and its fraction [112].

One of the major contributions of this section is that, we have been able to provide

a uniform attack framework (through degree dependent attack fk ∼ kγ) which

besides providing a flexibility in deciding attack strategy (through γ) also captures the

essential features of deterministic attack. Case 1 and case 2 of the degree dependent

attack resemble exactly the case 2 and case 1 of the deterministic attack respectively.

In addition, γ = 0 and γ < 0 essentially model the degree independent and degree

dependent failures respectively which have been illustrated in Chapter 3.

4.2.3 Physical interpretation of the attack exponent γ

The availability of the generalized attack model fk ∼ kγ immediately points to the

importance of analyzing the attack parameter γ which signifies the information avail-
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able to the attacker to breakdown the network [55]. As we know, the generalized

attack can be represented as fk =
kγ

C
where C is the normalizing constant. Clearly in

the case of γ > 0, high degree nodes are removed with higher probability. Under this

kind of generalized attack, the critical condition for stability of the large scale net-

works (N → ∞) with degree distribution pk can be expressed according to Eq. (4.9)

as follows:

⟨k2⟩ − 2⟨k⟩+ [⟨k1+γ⟩ − ⟨k2+γ⟩]
C

= 0 , (4.29)

where ⟨kω⟩ is defined as ⟨kω⟩ =
∑

k k
ω pk. In consequence, the critical value of C that

breaks down the network (termed as ‘percolating C’) simply reads:

C =
⟨k2+γ⟩ − ⟨k1+γ⟩
⟨k2⟩ − 2⟨k⟩

. (4.30)

The fraction of removed nodes f after an attack becomes f =
∑

k pkfk. Interestingly,

for a given value of γ, the value of C obtained from Eq. (4.30) may not be feasible if

fk =
kγ

C
> 1. This implies that an attack of the form fk =

kγ

C
is unable to destroy the

network. Given an attack characterized by an exponent γ, and using Eq. (4.30), the

critical fraction of nodes that is required to remove in order to destroy the network

is given by

fc =
⟨k2⟩ − 2⟨k⟩

⟨k2+γ⟩ − ⟨k1+γ⟩
⟨kγ⟩ . (4.31)

Eq. 4.31 is a generalized expression and can be applicable for any kind of network.

However, the concept of topology information γ becomes more relevant for the net-

work with continuous degree distribution, rather than the network consisting only

two distinct degrees. Hence, next we perform a case study for the scale free networks

where degree distribution follows pk ∼ k−α with a maximum degree kM . Fig 4.10 il-

lustrates the behavior of the percolation threshold fc of the scale free networks due to

the change in the attack exponent γ. It also shows a comparison between Eq. (4.31)

and stochastic simulations performed on the networks of size 105 with 500 realizations.

In order to find the simulated value of percolating C as well as percolation threshold

fc, we have followed the method described in Chapter 3. As expected, random failure

(γ = 0) requires high attack intensity that increases percolation threshold. However
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as γ → ∞,

fc → (⟨k2⟩ − 2⟨k⟩) lim
γ→∞

⟨kγ⟩
⟨k2+γ⟩ − ⟨k1+γ⟩

(4.32)

⇒ fc → h(α)
1

kM(kM − 1)

where h(α)(= ⟨k2⟩ − 2⟨k⟩) is a constant function of power law exponent α and maxi-

mum degree of the network kM . Hence as information about the network (γ) increases,

fc decreases and converges to some constant value. The analysis of this attack has

revealed that in scale free networks an increase of γ leads to a decrease of the critical

fraction of nodes that must be removed to disintegrate the network; i.e. a decrease in

the percolation threshold fc. However, after a threshold γ, the percolation threshold

fc reaches to some constant value and does not decrease further.

4.2.4 Impact of network size on the percolation threshold

Till now, our work has focused on analyzing the stability of large scale networks;

this is in line with the general trend. Hence, the percolation threshold fc remains

independent of the network size N . However, the framework developed in this chapter

provides us the flexibility to understand the stability of small scale networks also. In

this section, we illustrate the effect of network size N upon the percolation threshold

fc(N). In section 4.1.1, we compute the probability ϕ of finding an edge in the

surviving subset S that is connected to a node of other subset R (Fig. 4.1) as

ϕ =
E∑∞

i=0 i ni (1− fi)
=

∑∞
i=0 i pi fi

(
∑∞

k=0 k pk)− 1/N
. (4.33)

Following section 4.1.2, we find that the critical condition for the disintegration of

the finite size networks can be expressed as(∑
k

kpk(1− fk)

)(∑
k

pkk
2(1− fk) +

∑
k

kpk(fk − 2)

)
+

1

N

(∑
k

kpk(1− fk)(2− k)

)
= 0 (4.34)
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Next we customize Eq. 4.34 for random failure by substituting fk = f . Subsequently

the percolation threshold for finite size network becomes

fc(N) =

(
1− 1

⟨k2⟩
⟨k⟩ −1

)
+

1

N

(
2− ⟨k2⟩/⟨k⟩
⟨k2⟩ − ⟨k⟩

)
(4.35)

As network size N → ∞, the expression of percolation threshold for random failure

reduces to

f∞
c = 1− 1

⟨k2⟩
⟨k⟩ −1

(4.36)

which converges to Eq. (3.17) of Chapter 3.

Although Eq. (4.35) is a generalized expression, we show the results for Erdos-Renyi

graph where the distinction between the finite and infinite size networks becomes

nicely evident. We perform analysis on the E-R graph of finite size N with aver-

age degree ⟨k⟩ = 3. Fig. 4.11 shows a comparative study between the percolation

thresholds calculated from Eq. 4.35 (where we consider the network size N) and from

Eq. 4.36 (where fc is invariant of network size) and results obtained from stochastic

simulation. As Eq. 4.36 does not take the network size under consideration, f∞
c takes

a constant value for a specific network configuration. However, fc(N) calculated from

Eq. 4.35 takes a lower value for small sized networks and gradually increases with

increase in N . The observed deviation between fc(N) and simulation results can

be arguably attributed to clustering effects, which have been ignored in the current

approach.

4.3 Effect of attacks upon the commercial Gnutella

Networks

In the previous sections, we have modeled the superpeer networks as various theoret-

ical random graphs and validated our theoretically derived results through stochastic

simulation. In this section, we choose the commercially popular peer-to-peer network,

Gnutella as a case study and examine its stability in face of attacks. In section 4.1.2,

we have shown that the measurement of network stability primarily depends upon
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Figure 4.11: The figure illustrates the impact of network size N upon the percolation

threshold fc. The symbols represent the fc obtained from stochastic simulation with

a large number of realizations. The dashed line shows the percolation threshold

calculated by Eq. (3.17) first proposed in [28] where fc remains invariant with network

size. The solid line shows the fc calculated according to Eq. (4.35). The nature of the

curve of Eq. (4.35) matches with the simulation however the results are not exact.

the deformed degree distribution p′k after attack. Hence, in this section we focus

on the accurate calculation of p′k for Gnutella networks. We perform a comparative

study of the p′k obtained from the experiments on Gnutella networks with the results

calculated from the analytical framework.

4.3.1 Attacks on Gnutella networks

In Chapter 3, we have described the generation of Gnutella networks following (a)

bootstrapping protocol (b) topological snapshot. In this section, we refer the Gnutella

network generated from bootstrapping protocol as ‘Gnutella A’ and Gnutella network

generated from the topological snapshot as ‘Gnutella B’ and simulate deterministic

attack and random failure on these two networks. We simulate the ‘Gnutella A’ net-

work of N = 5000 nodes and all nodes in the network having degree more than 10

are removed in deterministic attack scenario. In random failure, 20% nodes in the

network are removed randomly. The experiment is performed for 500 realizations
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Figure 4.12: The above plots show the topological impact of deterministic attack and

random failure upon the simulated Gnutella A network of 5000 nodes. A comparative

study of the simulation results with our theoretical model is performed.

and the average of the deformed degree distribution (p′ksim) and percolation threshold

(fsim) are calculated. We plot the degree distribution of the initial (pk) and deformed

network (p′ksim) in Fig. 4.12 and compare the simulation results with the theoretically

calculated p′ktheory according to Eq. (4.4). Similarly, we mount a deterministic attack

on ‘Gnutella B’ network where all the nodes in the network having degree more than

40 are removed. In random failure, 20% nodes in the network are removed randomly.

The comparative study of the deformed degree distribution p′ksim obtained from sim-

ulation with the theoretical model (Eq. (4.4)) has been done for these two kinds of

node disturbances (Fig. 4.13). We observe that in both topologies (Gnutella A and B),

the proposed theoretical model provides a reasonable approximation of the topological

changes in the network under random failure (Fig. 4.12(b), Fig. 4.13(b)) however there

is a deviation in case of deterministic attack (Fig. 4.12(a), Fig. 4.13(a)). We quantify

the deviation of the theoretically predicted result from simulation in two different

perspectives. First, we calculate the deviation in the individual pk∀k (micro level de-

viation), second, the deviation in the average degree (macro level deviation). In order
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Figure 4.13: The above plots show the effect of attack and failure upon the Gnutella

B network simulated from the topological snapshot taken during September 2004.

The network is of the size of 1, 31, 869 nodes. A comparative study of the simulation

results with our theoretical model is performed.

to quantify the deviation of individual pk,∀k for Gnutella A network, we calculate the

deviation parameter devA in the following manner. We compute p′ksim and p′ktheory for

individual degree k and subsequently derive their difference diffk = |p′ksim − p′ktheory |.
The overall deviation (devA) is calculated from

∑
k diffk

max(k)
. Similarly we calculate the

deviation parameter devB for the Gnutella B network. We find that the deviation

parameter devA = 0.0284 in the Gnutella A network is higher than the Gnutella B

network, devB = 0.0219. Next we show the deviation in the theoretically and ex-

perimentally calculated average degree of the Gnutella network after deterministic

attack. In Gnutella A and B networks, the average degree of the initial network is

5.6191 and 2.4359 respectively. After attack, the new average degree obtained from

simulation becomes Avg degAsim = 0.4858 and Avg degBsim = 0.1608 respectively for

Gnutella A and B network. However the theoretically calculated average degree for

these two networks show higher values than simulation (Avg degAtheory = 1.5917 and
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Avg degBtheory = 0.6617). We believe that the observed deviation between theoretical

and simulation results are due to the presence of degree-degree correlation in the

network which was not present in the random graphs. We first formally define the

degree-degree correlation and then examine its precise role.

Defining degree-degree correlation

Degree-degree correlation is defined as the probability of attachment of a source node

to the target node given the present degree of the source/target node. Many networks

show “assortative mixing” on their degrees, i.e., a preference for high-degree nodes

to attach to other high-degree nodes in the network. Others show “dis-assortative

mixing” where high degree nodes attach to low degree ones. In [123], this property

has been conveniently measured by means of a single normalized index, the assor-

tativity coefficient2. In our simulation, the Gnutella networks generated through

the bootstrapping protocol (Gnutella A) as well as topological snapshot (Gnutella

B) exhibit dis-assortativity (negative assortativity). The average assortativity of the

Gnutella A for 500 realizations becomes α = −0.6749 whereas the Gnutella B has

α = −0.6318. The deviation of the theoretical results from simulation for Gnutella

A (devA = 0.0284) is more than the Gnutella B network (devB = 0.0219) as well

as Gnutella A has lower assortativity than Gnutella B. This indicates some sort of

relationship between the deviation and assortativity. The precise role of assortativity

is investigated next.

Role of assortativity

In this section, we intuitively explain the deviation between the theoretical and sim-

ulation results in assortative network. First we explain the impact of assortativity on

2Degree-degree correlation of a network is formally defined through assortativity coefficient α [123]

such that

α =
M−1

∑
i jiki − [M−1

∑
1
2 (ji + ki)]

2

M−1
∑

i
1
2 (j

2
i + k2i )− [M−1

∑
1
2 (ji + ki)]2

where ji, ki are the degrees of the vertices at the ends of the ith edge, with i = 1...M (M is the

total number of edges in the network).
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the average degree of the network.

Impact of assortativity on the average degree

A given attack on some assortative network changes the average degree (density) of

the network, and the amount of change depends upon the assortative nature of the

network. In Fig. 4.1, we find that two types of edges originate from the nodes of the

removed set R; (a) one set of edges whose other end is also connected to the nodes

of set R (say ER) (b) another set of edges whose other end is connected to the nodes

of set S (say E). For any given attack fatk
k , the number of nodes in set R will be

same for all networks. Let us assume that due to attack fatk
k on a given network,

the number of tips removed only from the nodes of removed set R is R̂tips and E is

the number of tips removed from the set S. The number of edge tips removed will

be the summation of R̂tips and E. Hence, the total number of edges removed from

the network after attack becomes
E+R̂tips

2
. R̂tips will be a constant across all networks

(it is directly dependent on the number of nodes removed); therefore the number of

edges removed will be directly dependent upon the value of E. Subsequently, the

number of edges survived in the network after the attack fatk
k may be expressed as

Enew = Etot −
E + R̂tips

2
(4.37)

The value of E (number of edges running between the set S and R) depends on

the assortativity of the network. In case of deterministic attack in assortative net-

work, most of the high degree nodes (in R) are connected among themselves (mak-

ing ER quite high), hence a very small number of edges E are connected to the

set S. Using Eq. 4.37, we find that the removal of few E edges keeps the net-

work quite dense with high average degree. However, in disassortative network,

most of the edges E run between S (low degree nodes) and R (high degree nodes)

and there exits few links ER connecting the high degree nodes of set R. Subse-

quently, the removal of large number of E edges reduces the average degree. Hence

Enew(assort) > Enew(uncorr) > Enew(disassort).

Intuitive justification behind Avg degtheory > Avg degsim against attack

We simulate an attack on Gnutella networks (a disassortative network) such that most

of the high degree nodes are removed. As explained, removal of high degree nodes re-

moves the large number of edges running between set S and R , say Esim (E obtained
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from simulation). On the other hand, in theoretically calculated E (according to the

Eq. (4.1)), say Etheory, we assume that the network is uncorrelated in nature, hence

there is an equal/uniform probability that the other end of the removed tip (in set

R) is connected to the nodes in the set S and set R. Hence the total number of edges

running between the set S and set R, calculated theoretically (Etheory) is less than

Esim. This difference in the estimation of E (Etheory and Esim) affects the number

of survived edges Enew (Eq. 4.37) in the survived network. More specifically, in the

theoretical calculation, the amount of reduction of the average degree of the survived

network after attack is underestimated than that of the simulation. Hence after the

given attack, the simulated network (p′ksim) becomes more sparse than the theoreti-

cally calculated network (p′ktheory). Subsequently, Avg degtheory > Avg degsim. This

directly answers the question why for Gnutella network, Avg degtheory > Avg degsim

where theory signifies the uncorrelated network and sim signifies disassortative net-

work.

Assortativity does not have any impact on random failure

However it is interesting to observe in Fig. 4.12(b) and Fig. 4.13(b) that although

assortativity takes a major role in attack, it does not have any influence in random

failure. In random failure, the nodes in the set S and R are placed independent of

their degree, hence high and low degree nodes are uniformly distributed in those sets.

Subsequently, there is an equal/uniform probability that the other end of the edge

connected to a node of the removed set R is linked with either a node of set S or

of set R. In this way, the effect of assortativity becomes nullified in face of random

failure.

In the next section, we utilize this intuitive understanding to refine and rectify our

analytical framework so that it becomes applicable to the correlated networks also.

4.4 Stability analysis for degree correlated networks

In the previous section, we find that our theoretical framework is not able to explain

the exact behavior of Gnutella network in face of deterministic attack. However, we

have presented an intuitive explanation for the deviation of the theoretically computed
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results from the simulation. In this section we refine our framework, developed in

section 4.1 to include correlated networks and examine its applicability on Gnutella

network.

4.4.1 Deformed topology after attack

In this section, we modify the expression (derived in section 4.1.1) of deformed degree

distribution p′k to make it suitable for degree correlated networks. The degree-degree

correlation information of a network with maximum degree kM is represented by the

correlation matrix M as follows

M =



m11 m12 m13 ... m1kM

m21 m22 m23 ... m2kM

. . . . .

. . . . .

. . . . .

mkM1 mkM2 mkM3 ... mkMkM


In this correlation matrix M , each element mjk represents the fraction of total edges

that exist between nodes of degree j and nodes of degree k (Fig. 4.14(a)). We frame

the attack on the network in the same manner as explained in the section 4.1.1. The

attack on the network divides the graph into two sets of nodes: one set containing the

surviving nodes S and another set containing the nodes to be removed R as shown

in the Fig. (4.14(b)).

Ej instead of E

In section 4.1.1, we have calculated E which represents the number of edges running

between set S and R. It is also the number of tips that is going to be removed from

the nodes of the set S. The expression of E in Eq.( 4.1) gives correct approximation

for an uncorrelated network as the edge connectivity between a node of set R and

any node of set S is equally probable. But in case of a degree correlated network, the

probability of an edge between a node of degree i and a node of degree j is given by

mij element of the correlation matrixM . Hence instead of calculating E we calculate

Ej which indicates the number of edges connected between nodes of degree j in the
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set S and the nodes of any degree in the set R (Fig. 4.14(b)). Hence the total number

of edges connected between the set S and R, that are going to be removed is given

by E =
∑kM

j=0Ej. The expression for Ej can be formulated in the following way.

(a) The degree correlation in the network

represented by the elements of the assor-

tativity matrix M

(b) The dissection of a correlated network into two

sets S and R due to the attack on the network.

Figure 4.14: Degree correlation present in the network and its implication on attack.

The total number of edge tips connected to the k degree nodes in set R can be

expressed as knkfk. Therefore, the number of edge tips connected to the j degree

nodes of the network whose other end is connected to the k degree node of set R

becomes m′
jkknkfk. The fraction m′

jk represents the fraction of edges connecting j

degree nodes and k degree nodes over all the edges in the network with at least one

end connected to the k degree nodes. The value of m′
jk can be computed from the

edge correlation matrix M as

m′
jk =

mjk∑∞
j=0mjk

=
mjk

kpk

∑
i

ipi (4.38)

where
∑∞

j=0mjk denotes the fraction of edge tips connected to k degree nodes in the

network and may be expressed as

∞∑
j=0

mjk =
kpk∑
i ipi

(4.39)

Similar to section 4.2, we can say that the number of edge tips connected to the j
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degree nodes of set S whose other end is connected to the k degree node of set R

becomes m′
jkknkfk (1− fj). This helps us to derive the total number of edges whose

one end is connected to a j degree node in set S and the other end is connected to

any node in the set R, which can be expressed as

Ej =
∞∑
k=0

m′
jk k nk fk (1− fj) (4.40)

Due to the presence of degree correlation, the probability that a surviving node of

set S loses one link due to the removal of E(=
∑kM

i=0Ei) edges is not constant (as ϕ

in Eq. 4.33). Moreover, the probability that a survived node loses one link depends

upon the degree (j) of the survived node. Hence, the probability ϕj of finding an edge

running between a j degree node in the surviving set S and any node of the other set

R can be expressed as

ϕj =
Ej

jnj(1− fj)
(4.41)

Here ϕj signifies the probability that a j degree node loses one link due the removal

of E edges.

Finally, using the concept of Eq. (4.4) and from the Eqs. (4.41) and (4.3), the

expression of the deformed degree distribution p′k can be expressed in binomial dis-

tribution form

p′k =
∞∑
q=k

(
q

k

)
ϕq−k
q (1− ϕq)

k psq . (4.42)

where the probability psq of finding a node with degree q in the surviving subset S

(before removal of the E edges) is given by Eq. (4.3) of section 4.1.1.

Random failure as a special case

In case of random failure attack the probability of attack on every node is same i.e.

fj = fk = f (constant). Therefore we can express Ej, which is the total number of

edges whose one end is connected to a j degree node in set S and the other end is
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connected to any node in the set R, as the following:

Ej = f(1− f)
∞∑
k=0

m′
jk k nk (4.43)

Using Eq. (4.38), Eq. (4.43) and (4.39) the expression for Ej reduces to

Ej = f(1− f)N
∞∑
i=0

ipi

∞∑
k=0

mjk = f(1− f)Njpj (4.44)

We substitute the expression for Ej obtained from Eq. (4.44) in Eq. (4.41) and find

ϕj =
f(1− f)Njpj
jnj(1− f)

= f (4.45)

Hence in case of random failure

ϕ = ϕj = f(constant) independent of any degree j. (4.46)

Substituting the value of ϕ = f in Eq. (4.4) and the value ϕq = f in Eq. (4.42) we

find that

p′k(Uncorrelated) = p′k(Correlated) (4.47)

=
∞∑
q=k

(
q

k

)
f q−k(1− f)k psq (4.48)

The above expression is independent of any correlation parameter. This shows that

degree-degree correlation has no role to play in case of random failure. This con-

clusion confirms the results shown in Figs. 4.12(b) and 4.13(b) where we observe a

good agreement of p′k obtained from the theory and simulation for Gnutella network.

However, this does not hold for attacks in correlated networks. Next, we show that

our refinement gives better agreement with the simulation results for the attacks on

correlated Gnutella networks.
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(a) Gnutella A network, correlation co-

efficient α = −0.6749
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(b) Gnutella B network, correlation

coefficient α = −0.6318

Figure 4.15: The impact of deterministic attack upon the degree distribution pk of

the Gnutella network. The figures show that Eq. 4.42 gives far better approximation

of the deformed degree distribution than Eq. 4.4

Simulation results on Gnutella Network

We validate the theory developed for correlated network by simulating deterministic

attack on ‘Gnutella A’ and ‘Gnutella B’ networks. Similar to section 4.3.1, we simulate

the deterministic attack on the Gnutella networks. In ‘Gnutella A’ and ‘Gnutella B’

network, we simulate deterministic attacks by removing all the nodes with degree

greater than 10 and 40 respectively. Fig. (4.15) shows the impact of the deterministic

attack on the degree distribution of Gnutella network. It can be observed that the

deformed degree distribution obtained from Eq. 4.42 for the Gnutella network is in

good agreement with simulation results. We find that the average degree of the

‘Gnutella A’ and ‘Gnutella B’ networks obtained from simulation (Avg degAsim =

0.4858 and Avg degBsim = 0.1608) are quite close to the theoretically calculated values

using Eq. 4.42 (Avg degAtheory = 0.4739 and Avg degBtheory = 0.1514).



4.5 Conclusion 117

4.5 Conclusion

In this chapter, we have developed a more sophisticated framework for stability analy-

sis of superpeer networks against attacks. We have shown that this framework enables

us to calculate the degree distribution of the deformed network p′k after removal of

nodes. In addition, the framework enables us to measure stability of small scale net-

work as well as networks exhibiting strong degree-degree correlated mixing. As an

application of the framework, we have analyzed the effects of two kinds of attacks

namely deterministic attack and degree dependent attack and validated the results

through simulation. We have shown that in deterministic attack, the increase in peer

degree may be detrimental in some cases. Our framework has also revealed that the

degree dependent attack provides us a more generalized attack strategy where various

situations can be generated only by changing the attack parameter γ. This attack

parameter γ also signifies the amount of topological information available to the at-

tacker to breakdown the network. We have observed that increase in γ makes the

attack efficient by reducing the percolation threshold. However, beyond a threshold

limit, this information does not help the attackers in a significant manner. We have

presented a comparative study of our theoretical analysis with real world Gnutella

network. The results have shown that degree degree correlation present in Gnutella

exhibits a disparity in p′k in case of attack however the disparity is not seen in case

of random failure. We have suitably modified our framework to include the degree-

degree correlation factor in consideration. It is important to note that, the stability

condition stated in Eq. (4.5) [128] is not applicable for degree-degree correlated net-

work [128]. Hence, in this work we do not derive the percolation threshold of degree

correlated network; rather we focus on the accurate calculation of p′k through a gener-

alized framework. Since degree distribution p′k is the main ingredient for the stability

condition of correlated networks [67], we claim that our work makes a significant

contribution towards the understanding stability of generalized network.

In Chapters 3 and 4, we have analyzed the stability of some ‘existing’ superpeer

networks against peer churn and attacks. However, superpeer networks are generally

growing networks that continuously evolve with the addition of new peers as well as

realignment of peers. Hence, the formation or emergence of superpeer network due to
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various node and link dynamics is another interesting research problem. The next two

chapters focus on the various issues related to the emergence of superpeer networks

due to joining and leaving of nodes, rewiring of links etc.



Chapter 5

Emergence of superpeer networks

in face of bootstrapping protocols

5.1 Introduction

Superpeer network is formed mainly as a result of the bootstrapping or joining proto-

col followed by incoming peers. Some other factors like peer churn, rewiring of links

also play a major role in the network formation. The superpeer networks emerged

following these node and link dynamics exhibit two regimes or ‘bimodality’ in their

degree distribution; one regime consists of the large number of low degree peer nodes

while the other consists of the small number of high degree superpeers [113]. The

emergence of bimodal network due to the node and link dynamics is an interesting

observation, a rigorous analysis need to be done to understand it. Moreover the per-

formance of the superpeer networks mainly depends upon the topological properties

of the emerging networks [20, 139, 144, 170] like network diameter, amount of super-

peers in the network, peer-superpeer ratio etc. The analysis will help in regulating

these topological properties and subsequently improving the performance of various

p2p services will prove to be an useful step for p2p research community. In this

chapter, we understand the emergence of superpeer networks due to bootstrapping of

the incoming nodes and analyze the impact of various nodal parameters on the QoS

119
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of different p2p services. In the next chapter, we extend the formalism to include

the peer churn and link rewiring and analyze their impact on the various topological

properties of the network.

We develop a theoretical framework to explain the appearance of superpeer net-

works due to the execution of peer servents like limewire, mutella etc [3, 82]. The

bootstrapping protocols run by these servents select some ‘good’ online nodes that

are already part of the network and send connection requests to them [82]. We model

the bootstrapping protocols by the preferential attachment rule where the probabil-

ity of joining of an incoming peer to an online node is proportional to the ‘goodness’

of the online node. ‘Goodness’ of a peer can be characterized by the node property

(later quantified as node weight) like amount of resource, processing power, storage

space etc that a particular peer possesses [90] as well as its current degree. Beyond

this, we identify that in p2p networks, bandwidth of a node is finite and restricts

its maximum degree (cutoff degree). A node, after reaching its maximum degree, re-

jects any further connection requests from incoming peers. In this chapter, although

the basic methodology of preferential attachment is followed, however unlike popular

power law, there is an emergence of bimodal degree distribution. We show that the

interplay of finite bandwidth with node property play a key role in the emergence of

bimodal network [111].

Through suitable mathematical treatment on the framework, we calculate the amount

of superpeers in the network, the impact of different parameters like resource, pro-

cessing power etc on the superpeer-peer ratio etc. As a practical application, we

show that our formalism (with a small modification) can almost accurately explain

the topological structure of the Gnutella network [65], obtained from the real data

taken in 2004 [1]. We believe that this understanding may further help network engi-

neers to appropriately tune the servent programs for improving the p2p services like

minimizing search time, fast downloading of files etc.

The outline of the chapter is as follows. In section 5.2, we state and model

the bootstrapping protocol followed by peer servents. Section 5.3 proposes a formal

framework considering that all the peers join with fixed cutoff degree. In section 5.4,

we generalize the theory for the case where different peers join the network with

variable cutoff degrees. In light of the framework developed, an empirical analysis
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of the global nature of the Gnutella 0.6 network is provided in section 5.5. Some

suggestions to the network engineers in order to improve the p2p services is provided

in section 5.6 after which we conclude this chapter.

5.2 Bootstrapping protocols

In this section, we illustrate and model the bootstrapping protocols that are executed

by different servent programs [32]. Servents like limewire and gnucleus maintain a list

of ‘good’ hosts in the GWebCache and give priority to them during connection initi-

ation [82]. We model bootstrapping protocols through node attachment rules where

probability of attachment of the incoming peer to an online node is proportional to

the node property (weight) and current degree of the online node. The generalized

bootstrapping protocol is stated below. The cutoff degree kc(i) is same for all peers

i in the analysis of section 5.3 while it is varied in section 5.4.

Input: Nodes, where each node i comes with individual node weight wi and a

cutoff degree kc(i)

Output: Network emerged due to joining of the nodes

foreach Incoming node i do
Node i preferentially chooses m′ (m′ > m) online nodes based on their

weights and degrees

while m online nodes are not connected with i do
j = select an online node among the chosen m′ nodes

Node i sends the connection request to j

if degree(j)< kc(j) then
Node i connects with node j

end

else
Node j rejects the connection request

end

end

end
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5.3 Development of analytical framework: peers

joining with fixed bandwidth

In this section, we develop the analytical framework following the concept of rate

equations [11]. We assume that each incoming peer joins the network at any timestep

n with some node weight and connects to m online nodes in the network following

the bootstrapping protocol. The minimum and maximum weight of a node in the

network can be wmin and wmax respectively. The probability of attachment of the

incoming peer to an online node is proportional to the weight and current degree of

the online node. The probability that an incoming peer has weight wi is fwi
and all

the nodes have some fixed cutoff degree kc. Any node upon reaching the degree kc

rejects any further connection request from the incoming peer.

We introduce the term setwi
to denote the set of nodes in the network with weight

wi. Initially we intend to compute pk,wi
, the fraction of k degree nodes in setwi

and

then sum it over all sets (weights) to find degree distribution pk. These values of pk,wi

can be computed by observing the shift in the number of k degree nodes to k + 1

degree nodes as well as k−1 degree nodes to k degree nodes due to the attachment of

a new node at timestep n. Let the fraction of nodes in setwi
having degree k at some

timestep n be pk,n,wi
, then the total number of k degree nodes in setwi

before addition

of a new node is nfwi
pk,n,wi

and after addition of the node becomes (n+1)fwi
pk,n+1,wi

.

Hence, the change in the number of k degree nodes in setwi
between the timesteps n

and n+ 1 becomes

∆nk,wi
= (n+ 1)fwi

pk,n+1,wi
− nfwi

pk,n,wi
(5.1)

We formulate rate equations depicting these changes for some arbitrary setwi
. By

solving those rate equations, we calculate pk,wi
and subsequently the degree distribu-

tion pk (fraction of nodes having degree k) of the entire network.

Methodology

In order to write the rate equations [11], we need to know the attachment probability

Awi
that an online node x with weight wi (i.e. in setwi

) will receive a new link from

the incoming peer. The probability that an online node will receive an incoming link
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is proportional to the node weight wi and its current degree k and can be depicted as

Awi
=

wifwi

∑kc−1
k=m kpk,wi∑max

i′=minwi′fwi′

∑kc−1
k1=m k1pk1,wi′

=
wifwi

mwi
βi∑max

i′=minwi′fwi′
mwi′

βi′
degree(x) < kc (5.2)

= 0 degree(x) ≥ kc

where βi = 1− kcpkc,wi

2mwi
(pkc,wi

is the fraction of nodes in setwi
that have reached their

cutoff degree kc hence stopped accepting new links) implies the fraction of nodes in

setwi
capable of accepting new links from the incoming peer and normalizing constant

2mwi
=
∑kc

k=m kpk,wi
denotes the average degree of the nodes in setwi

. The numerator

of Eq. (5.2) represents the total amount of weight of nodes in setwi
that are allowed

to take incoming links. The denominator normalizes the fraction by the total amount

of weight of all the nodes in the network that are allowed to take incoming links.

The joining of a new node of degree m at timestep n+1 changes the total number

of k degree nodes in setwi
. Since all the nodes in the setwi

contain equal weight wi, the

chance of getting a new link for the online nodes depends upon their current degree

k and fraction present in the set at that timestep, hence can be expressed as
kpk,n,wi

2mwiβi
.

The βi in denominator takes care of the fact that the nodes, that have reached the

cutoff degree kc do not participate in the formation of new link. Due to the joining of

a new node of degree m in the network, some k degree nodes in setwi
acquire a new

link and become nodes of degree k + 1. So the amount of decrease in the number of

nodes of degree k, (m ≤ k < kc) in setwi
due to this outflux is

δk→(k+1) =
kpk,n,wi

2mwi
βi

× Awi
m (5.3)

Similarly a fraction of nodes having degree k − 1 get a new link and move to the

degree k. We now write the rate equations in order to formulate the change in the

number of k degree nodes in an individual setwi
due to the attachment of a new node

of degree m. Three pertinent degree ranges k = m, m < k < kc and k = kc are taken

into consideration.

Rate equation for k = m

Since the probability of joining of a node having weight wi in the network is fwi
, the
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joining of one new node of degree m on average increases fwi
fraction of m degree

nodes in the setwi
. Hence, net change in the number of nodes having degree k = m

can be expressed as

∆nm,wi
= (n+ 1)fwi

pm,n+1,wi
− nfwi

pm,n,wi

= fwi
− mpm,n,wi

2mwi
βi

× Awi
m (5.4)

Assuming the stationary condition for large n, pk,n+1,wi
= pk,n,wi

= pk,wi
[11] we find

pm,wi
=

1

(1 + m
αi
)

(5.5)

where,

αi =
2
∑max

j=minwjfwj
mwj

βj

wim
=
C

wi

(5.6)

and C =
2
∑

j wjfwjmwjβj

m
is a constant.

Similarly from Eq. (5.3), rate equation for m < k < kc

∆nk,wi
= (n+ 1)fwi

pk,n+1,wi
− nfwi

pk,n,wi

=

(
(k − 1)pk−1,n,wi

− kpk,n,wi

2mwi
βi

)
× Awi

m (5.7)

Subsequently, the recurrence relation becomes

pk,wi
=

(k − 1)

(k + αi)
pk−1,wi

(5.8)

Rate equation for k = kc

Since the nodes having degree kc are not allowed to take any incoming links, nodes

are only accumulated at degree k = kc. Subsequently,

∆nkc,wi
=

(kc − 1)pkc−1,n,wi

2mwi
βi

× Awi
m (5.9)

Hence, the corresponding recurrence equation becomes

pkc,wi
=

(kc − 1)

αi

pkc−1,wi
(5.10)



5.3 Formalism for fixed bandwidth 125

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree k

D
eg

re
e 

di
st

rib
ut

io
n 

p k

Theoretical results
Simulation results 

0 50 100
0

0.02

0.04

0.06

weight (w
i
)

w
ei

gh
t d

is
tr

ib
ut

io
n 

(f
w

i)

Weight distribution 

(a) Degree distribution

of the emerging network.

Weight distribution is taken

from normal distribution

(inset).

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree k

D
eg

re
e 

di
st

rib
ut

io
n 

p k

Theoretical results
Simulation results 

10
1

10
2

10
−6

10
−4

10
−2

10
0

weight w
i

w
ei

gh
t d

is
tr

ib
ut

io
n 

(f
w

i)

Weight distribution 

(b) Degree distribution

of the emerging network.

Weight distribution is taken

from power law distribution

(inset in log-log scale).

Figure 5.1: The plot represents the degree distribution of the network emerged fol-

lowing bootstrapping protocol with fixed cutoff degree kc = 10 and m = 1. The nodes

join the network with weights taken from normal distribution (mean=50 and standard

deviation 8, Fig. 5.1(a)) and power law distribution (exponent=2.5, Fig. 5.1(b)).

Computing the degree distribution

Solving the above stated rate equations, we obtain the degree distribution of the

entire network.

pk =
max∑

i=min

pk,wi
fwi

(5.11)

=


∑max

i=min
1

(1+ k
αi

)
fwi

k = m∑max
i=min

fwi

(1+ m
αi

)
×
∏k−m

j=1

(
k−j

k−j+1+αi

)
m < k < kc∑max

i=min fwi

∏k−1
j=m

j
(j+αi)

k = kc

5.3.1 Emergence of superpeer nodes

We are now in the position to theoretically understand the emergence of bimodal

distribution as well as the accumulation of superpeer nodes. A closer look at the

equations reveals that two modes appear in the degree distribution, one at k = m
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around which the degree of most of the nodes are concentrated and another at k = kc.

Two conditions need to be satisfied.

a. In order to show the appearance of mode or spike at k = kc, we have to satisfy

the condition pkc > pkc−1 and pkc > pkc+1.

b. In order to show the modal behavior at k = m, we have to satisfy the condition

pk < pk−1 for m ≤ k < kc. This also confirms that no other modes have emerged in

the network.

Fulfilling condition a: First of all, we show that the fraction of nodes having degree

kc, pkc is greater than pkc−1. From Eq. (5.11), we find

pkc
pkc−1

=

∑max
i=min pkc,wi

fwi∑max
i=min pkc−1,wi

fwi

=

∑
i (kc − 1)xi∑

i αixi
(5.12)

where

xi =
1

(m+ αi)(m+ 1 + αi)......(kc − 1 + αi)

Since
∑

imwi
fwi

= m and βi < 1 therefore mwi
fwi

βi < m, hence
∑

i (kc − 1) >
∑

i αi

as kc >> 1. This confirms pkc > pkc−1. Secondly, the bootstrapping protocol gives

pk = 0 for k > kc. Hence, we conclude the presence of a spike at degree kc.

Fulfilling condition b: We find for m ≤ k < kc, the probability pk continuously

decreases. This can be understood from Eq. (5.8) of the setwi

pk,wi

pk−1,wi

=
(k − 1)

(k + αi)
< 1 (5.13)

i.e. pk,wi
< pk−1,wi

. Hence for the entire network, pk < pk−1. These two observations

confirm the presence of two distinct modes in the degree distribution and lead to the

emergence of high degree superpeer nodes at degree kc (Figs. 5.1(a), 5.1(b)). Note

that, this feature is independent of the weight distribution fw.

5.3.2 Simulation results and inference derivation

We validate the theoretically obtained degree distribution (Eq. (5.11)) by simulating

the emergence of the network (Fig. 5.1). In these simulations, we follow the exactly

same procedure and assumptions that we have considered for theoretical modeling.
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Figure 5.2: Fig. 5.2(a) shows the change in pkc due to change in w2 and fw2 for the

bimodal weight distribution. Inset indicates the presence of optimum fw2 (i.e. f ∗
w2
)

at which pkc becomes maximum (p∗kc). Fig. 5.2(b) shows the change in f ∗
w2

and p∗kc
due to w2 (simulation results).

The stochastic simulation set up is as follows. During bootstrapping, each node joins

the network with some weight (10 ≤ w ≤ 100) taken from a weight distribution

fw. A ‘fitness’ value is assigned to each online node based upon its weight and

current degree. The incoming new node gets connected with an online node depending

upon the ‘fitness’ of that online node. In our simulation, we consider two different

weight distributions, namely normal distribution and power law distribution [90,144].

The total number of nodes in the system is considered to be 5000 and we perform

500 individual realizations and plot the average degree distribution. Fig. 5.1 shows

that the agreement between the theoretical and simulation results is exact which

validates the correctness of the theoretical model. Figs 5.1(a), 5.1(b) produce the

evidence of the emergence of two distinct regions in the degree distribution - the peer

and superpeer regions; the accumulation of the superpeer nodes occurs at degree

kc = 10. Fig. 5.1 confirms that the weight distribution hardly changes the nature (i.e.

bimodalilty) of the degree distribution. In the following, we investigate the influence

of different parameters on the amount of superpeers in the network (pkc). In order
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to gain more insights, we consider a simple bimodal weight distribution where nodes

join with two weights w1 (low) and w2 (high) with individual fractions fw1 (high) and

fw2 (low) respectively.

Impact of node weight w2 on pkc

In order to examine the impact of node weight, we perform the simulation with

w1 = 10 and fw1 = 0.8. The node weight w2 is varied from 10 to 3000 and we observe

how it affects pkc (kc=10). It can be observed from Fig. 5.2(a) that, initial increase

in w2 increases the fraction of superpeer nodes (pkc) in the network rapidly. However,

after a certain threshold, the pkc stabilizes and further increase in weight does not

increase pkc . Mathematically from Eq. (5.11), as w2 → ∞, pkc becomes

lim
w2→∞

pkc = fw2

kc−1∏
j=m

j

(j + 2
m
fw2m2β2)

(5.14)

and converges to some finite value. Hence, we conclude that after some threshold

limit, increase in the node weight w2 does not increase the amount of superpeers in

the network.

Impact of fraction of high weighted nodes (fw2) on pkc

In order to observe the impact of fw2 on pkc , we simulate the bootstrapping protocol

for two weights w1 = 10 and w2 = 100 and gradually increase the fw2 (i.e. decrease

fw1). Common intuition is that increase in fw2 in the network should increase pkc

(number of superpeers) as well. However inset of Fig. 5.2(a) shows that the initial

increase in fw2 increases pkc . But after reaching some maximum value (p∗kc), pkc

decreases. We are interested in understanding the reason behind the presence of an

optimum fw2 (f∗
w2
, at which pkc becomes maximum). This can be understood by

looking into the opposite forces performing at two ends (high and low) of f ∗
w2
.

In low fw2 : During the joining of a new node of degree m, the existing nodes in the

network acquire the links from the new node and scale their own degrees. Low fw2

(i.e. high fw1) makes the w1fw1 quite significant and subsequently increases Aw1 in
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Figure 5.3: In Figs 5.3(a) and 5.3(b), r is the fraction of incoming nodes which have

joined the network purely based on the degree sequence of the online nodes. The

results are obtained through stochastic simulation.

Eq. (5.2). In effect, out of m links of the incoming node, some of them get connected

to w1 weight nodes. However, since w1 is small, any individual w1 weighted node

rarely becomes capable to reach kc for contributing to pkc . But, collectively they

restrict the w2 weighted nodes from taking new links, hence reduce the rate of degree

scaling of those nodes. This results in low value of pkc . In high fw2 : However in high

fw2 , all the nodes of weight w2 compete with each other to get the new links. This

results in slowdown in the rate of increase of the degrees of the individual w2 weighted

nodes and gradually reduces pkc . The interaction of these two opposite effects results

in the emergence of an optimal f∗
w2
.

Impact of w2 on f ∗
w2

Fig. 5.2(b) shows that the increase in w2 sharply decreases the f∗
w2
. Increase in w2

increases Aw2 , hence most of the links of the incoming node get attached to the

nodes with high weight w2 even if fw2 is small. At the same time, low fw2 restricts

competition for the incoming links among the w2 nodes and helps the small fraction of
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high degree nodes to quickly scale towards the cutoff degree kc. Inset(1) of Fig. 5.2(b)

shows that the interplay of these two factors increases p∗kc (i.e. pkc at f
∗
w2
). However,

after reaching the saturated w2, all the incoming links are joined to the w2 nodes

hence further increase in w2 does not reduce the f ∗
w2

(or increase p∗kc) much.

Increase in m increases the amount of superpeers:

Eq. (5.14) calculates the maximum amount of superpeers in the network as w2 → ∞
for different fw2 . The optimum fraction f∗

w2
can be calculated from Eq. (5.14) by

taking
dpkc
dfw2

= 0. Substituting that f∗
w2

in Eq. (5.14) gives the maximum possible

amount of superpeers p∗kcmax for a particular m. Inset(2) of Fig. 5.2(b) shows that

with the increase in m, the p∗kcmax increases almost linearly.

Impact of the bootstrapping protocol on p2p services

In this subsection, we investigate the implications of some modifications in the boot-

strapping protocols on the various network properties like diameter, amount of su-

perpeers etc. Let us assume that the bootstrapping protocol of the incoming peer

can be controlled such that probability of connecting with only high degree online

nodes is r and probability of connecting with an online node based upon both its

weight and degree is 1 − r. In simulation, we assume that the weight distribution

of the incoming nodes follow power law distribution [144]. Fig. 5.3(a) shows that

increasing r slowly decreases the diameter of the network. Reducing the diameter of

the network improves the search efficiency of the network [130]. On the other hand,

increasing r reduces the amount of superpeers in the network pkc (Fig 5.3(b)). As the

file download latency is primarily dependent on the nature of the neighboring peers,

the increase in the amount of superpeers results in fast downloading of files. Hence

we conclude that carefully modifying the bootstrapping protocol to sieve appropriate

nodes from the GWebCache may improve the p2p services by reducing search latency

and improving file download speed etc.
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5.4 Development of analytical framework: peers

joining with individual/variable bandwidth

In reality, nodes join the network with various bandwidth connections like dial up,

ISDN, ADSL, leased line etc. Subsequently, the cutoff degree of individual nodes

becomes different from one another. For simplicity, we can assume that there is a

fixed number of discrete cutoff degrees each representing a type of connection. We

therefore generalize the bootstrapping in the following way. We assume that the

probabilities that a node j joins the network with cutoff degree kc(j) and weight

wj are qkc(j) and fwj
respectively (qkc(j) and fwj

are independent). Let every node

necessarily have cutoff degree between a specified minimum and maximum, kc(min)

and kc(max), respectively. Similar to the section 5.3, the probability that an online

node of weight wi (i.e. in setwi
) receives a new link from the incoming peer is

Âwi
=

wifwi
(
∑kmin−1

k=m kpk,wi
+
∑kmax

k=kmin
kpk,wi

Sk,wi
)∑max

i′=minwi′fwi′ (
∑kmin−1

k=m kpk,wi′ +
∑kmax

k=kmin
kpk,wi′Sk,wi′ )

=
wifwi

mwi
β̂i∑max

i′=minwi′fwi′mwi′ β̂i′
(5.15)

where

β̂i = 1−
∑kc(max)

k=kc(min) (1− Sk,wi
)kpk,wi

2mwi

(5.16)

implies the fraction of nodes in setwi
capable of accepting new links from the incoming

peer. Here Sk,wi
is the fraction of k degree nodes in setwi

whose cutoff degree is greater

than k and hence are still capable of taking incoming connections. We calculate the

exact expression for Sk,wi
later in this section.

Similar to the section 5.3, we formulate the rate equations to characterize joining of

an incoming node of degree m. Based on the behavior of Sk,wi
, the formulation of

rate equations and subsequently the computation of degree distribution need to be

done in two parts; nodes with degree m ≤ k < kc(min) in part A and nodes with

degree kc(min) ≤ k ≤ kc(max) in part B.

Part A : Dynamics analysis for m ≤ k < kc(min)
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In this case, none of the nodes has reached its cutoff degree. Hence Sk,wi
trivially

becomes 1 and the rate equations for m ≤ k < kc(min) are similar to the Eqs. (5.4)

and (5.7).

Part B : Dynamics analysis for kc(min) ≤ k ≤ kc(max)

An important difference between part B and part A is that, at each k (kc(min) ≤
k ≤ kc(max)), a fraction of nodes reach to their cutoff degree and stop accepting

further links from the incoming nodes. So the calculation of Sk,wi
becomes nontrivial

and their values play a major role in formulating the rate equations. We start our

analysis with the nodes having smallest cutoff degree k = kc(min).

(B1) Calculation for k = kc(min)

We defined earlier that Sk,wi
is the fraction of nodes having degree k = kc(min) in

the setwi
that have not reached their cutoff degree and are still capable of taking

incoming links. Hence similar to Eq. (5.3),
kpk,wi

2mwi β̂i
Âwi

mSk,wi
number of nodes can

move from degree kc(min) to kc(min) + 1 and leave the kc(min) set. On the other

hand, similar to Eq. (5.3), the mean number of nodes with degree k− 1 that accepts

new links and moves to degree k becomes
(k−1)pk−1,wi

2mwi β̂i
Âwi

m. The net change in the

number of nodes having degree k (for k = kc(min)) due to the attachment of a new

node is

∆nk,wi
=

((k − 1)pk−1,wi
− kpk,wi

Sk,wi
)

2mwi
β̂i

× Âwi
m (5.17)

Calculation of Sk,wi
for k = kc(min)

The mean number of nodes of degree (k − 1) that acquires the new links from the

incoming node and moves from degree k − 1 to degree k is δ̂jo(k−1)→k =
(k−1)pk−1,wi

2mwi β̂i
Âwi

m.

As qk is the probability that a node joins the network with cutoff degree k = kc(min),

hence δ̂jo(k−1)→k × qk∑kc(max)

k′=k
qk′

specifies the number of nodes that moves from degree

k − 1 to k and also reaches its cutoff degree k = kc(min). If the fraction of k degree

nodes in setwi
is pk,wi

, then the fraction of nodes reaching the cutoff degree k can be

normalized as

1− Sk,wi
=

(k−1)pk−1,wi

2mwi β̂i
Âwi

mq∗k

pk,wi

⇒ Sk=kc(min),wi
= 1−

(k−1)pk−1,wi

2mwi β̂i
Âwi

mq∗k

pk,wi

(5.18)
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where q∗k = qk∑kc(max)

k′=k
qk′

. Substituting the value of Sk,wi
in Eq. (5.17) and rearranging

pk,wi
, we get

pk,wi
=

(k − 1)

(k + α̂i)

(
1 +

kfwi
q∗k

α̂i

)
pk−1,wi

(5.19)

where

α̂i =
2
∑max

j=minwjfwj
mwj

β̂j

wjm
=

Ĉ

wj

(5.20)

and Ĉ =
2
∑

j wjfwjmwj β̂j

m
is a constant.

(B2) Calculation for k = kc(min) + 1

This case differs from the previous (k = kc(min)) in one aspect - unlike previous case,

only Skc(min),wi
(i.e. Sk−1,wi

) fraction of (k−1) degree nodes can accept incoming links

and change their degree to k. Hence, in this case the rate equation becomes

∆nk,wi
=

((k − 1)pk−1,wi
Sk−1,wi

− kpk,wi
Sk,wi

)

2mwi
β̂i

× Âwi
m (5.21)

Calculation of Sk,wi
for k = kc(min) + 1

The mean number of nodes of degree (k − 1) that acquires the new links from the

incoming node and moves to degree k is δ̂jo(k−1)→k =
(k−1)pk−1,wi

2mwiβi
×Âwi

mSk−1,wi
. As qk is

the probability that a node joins the network with cutoff degree k = kc(min)+1, hence

δ̂jo(k−1)→k × q∗k specifies the number of nodes that reaches the cutoff k = kc(min) + 1.

With proper normalization, we obtain

Sk=kc(min)+1,wi
= 1−

(k−1)pk−1,wi

2mwiβi
× Âwi

mSk−1,wi
q∗k

pk
(5.22)

Substituting the values of Sk,wi
, Sk−1,wi

in Eq. (5.21), we get

pk,wi
=

(k − 1)

(k + α̂i)

(
1 +

kfwi
q∗k

α̂i

)(
pk−1,wi

−
(k − 2)pk−2,wi

fwi
q∗k−1

α̂i

)
(5.23)

Generalization : Continuing the calculations for kc(min) < k ≤ kc(max), we obtain
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Figure 5.4: Case 1: fractions of nodes joined with cutoff degrees 3, 10 and 20 are

0.5, 0.1 and 0.4 respectively. Case 2: fractions of nodes joined with cutoff degrees

3, 10 and 20 are 0.5, 0.3 and 0.2 respectively (Inset). Fig. 5.4(b) shows case 3 where

50% nodes joined with cutoff degree 3 and rest 50% joined with cutoff degree 10.

Inset shows the change in pkc (at kc = 10) in the network due to the increase in q3

(the fraction of nodes with cutoff degree 3).

the generalized equation

pk,wi
=

(k − 1)

(k + α̂i)

(
1 +

kfwi
q∗k

α̂i

)
(5.24)pk−1,wi

+

k−kc(min)∑
j=1

(−1)j
j∏

t=1

(k − t− 1)pk−t−1,wi
fwi

q∗k−t

α̂i


The degree distribution of the entire network pk is calculated by summing up pk,wi

over all wi’s, i.e. pk =
∑max

i′=min pk,wi′fwi′ .

5.4.1 Simulation results and inference derivation

The trend which emerges behind such complicated equations is next explained through

analysis and illustration.



5.4 Formalism for variable bandwidth 135

Emergence of superpeer nodes

Fig. 5.4(a) shows that if peers join with (say) v different cutoff degrees, the degree

distribution of the network shows upto v (say v̂) spikes. We observe that the exact

value of v̂ typically depends upon the fraction of nodes joining the network with a

particular cutoff degree. Theoretically probing into the equations gives a better idea.

Let us assume that the nodes join the network with v distinct and far apart (i.e.

kc(aj+1) > kc(aj) + 1) bandwidths with cutoff degrees being kc(a1), kc(a2), kc(a3) ...

kc(av) respectively where kc(a1) is the smallest cutoff and kc(av) is the highest one.

Fraction of nodes joining with cutoff degree kc(ai) is qkc(ai) for 1 ≤ i ≤ v.

Condition: pkc(ai)−1 < pkc(ai) > pkc(ai)+1 confirms the appearance of spike at degree

kc(ai). The analysis follows. Calculating pkc(ai)+1,wi
and pkc(ai),wi

and eliminating

pkc(ai)−1,wi
, we get

pkc(ai)+1,wi

pkc(ai),wi

< 1, hence for the entire network, pkc(ai)+1 < pkc(ai);

that is the fraction of nodes having degree one more than some cutoff degree (say

kc(ai) + 1) is less than the fraction of nodes at that cutoff degree (say kc(ai)).

Similarly, from Eq. (5.19) we find

pkc(ai),wi

pkc(ai)−1,wi

=
(kc(ai)− 1)

(kc(ai) + α̂i)

[
1 +

kc(ai)fwi
q∗kc(ai)

α̂i

]
(5.25)

In order to satisfy pkc(ai) > pkc(ai)−1, we find that if qkc(ai) (the fraction of nodes joined

the network with cutoff degree kc(ai)) is above a threshold level, then only a mode or

spike appears at degree kc(ai).

Simulation results

In order to validate our theoretical framework, we simulate the bootstrapping protocol

where nodes join the network with variable cutoff degrees. We consider that the

weight distribution (fw) of the incoming nodes follows power law distribution (with

exponent=2.5) [144, 149] and the nodes can have 3 different cutoff degrees 3, 10 and

20. At the time of joining, each node establishes connections with 3 online nodes in

the network i.e. m = 3. We assume that the 50% of nodes join through (say) dial

up connection having cutoff degrees 3. Rest 10% of nodes join through (say) ISDN

connection with cutoff degree 10 and 40% through (say) leased line connection with
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cutoff degree 20. We assume that all the nodes having degree ≥ 10 can be considered

as superpeer nodes [170]. The total number of nodes in the simulation system is 5000

and 500 different realizations are performed. Fig. 5.4(a) shows that the agreement

between the theoretical model (Eq. (5.24)) and simulation is exact.

Measuring the amount of superpeers in the network

Fig. 5.4(a) shows that in case 1, total fraction of superpeer nodes (i.e. degree ≥ 10) in

the network is 0.1472. On the other hand, if the fraction of nodes joining with cutoff

degrees 3, 10 and 20 is 0.5, 0.3 and 0.2 respectively (inset of Fig. 5.4(a), referred as

case 2), the fraction of superpeers in the network becomes 0.2158. If 50% of nodes join

with cutoff 3 and rest 50% joins with a cutoff 10, the total fraction of superpeers in the

network becomes 0.2361 (Fig. 5.4(b), referred as case 3). Hence our results show that

instead of joining the network through multiple high bandwidth connections, using a

single bandwidth is optimal for the emergence of highest amount of superpeers in the

network.

Effect of low cutoff degrees: In Fig. 5.4(b) (inset), we consider a situation where the

nodes join with two cutoff degrees; q3 fraction of nodes join with cutoff degree 3

and rest q10 = (1 − q3) fraction of nodes join with higher cutoff degree 10. In the

idealistic case, when all the nodes join with cutoff degree 10 (i.e. q3 = 0), the amount

of superpeers in the network would be maximum (pkc = 0.32). The amount would

decrease as some nodes with lower bandwidth hence lower cutoff degree (here 3) joins

the network. The plot in Fig. 5.4(b) (inset) shows the rate at which pkc (kc = 10)

decreases. We find that the fraction of superpeer nodes hardly changes as long as

percentage of nodes with cutoff degree 3 are less than 20%.

5.5 Case study with Gnutella network

We simulate Gnutella network following the snapshot obtained from the Multimedia

& Internetworking Research Group, University of Oregon, USA [1]. The snapshot is

collected by the research group during September 2004 and the size of the network
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Figure 5.5: Degree distribution of Gnutella network taken from the topological snap-

shot [1]. The inset shows the weight distribution of the incoming nodes [20]. We

assume that the weight of a node can be determined by the amount of shared files it

possesses (indicates the shared resource) and inverse of node latency (indicates the

node’s processing power). The cumulative distribution of the amount of shared files

and latency of the Gnutella peers are available in [20]. We take a joint probability dis-

tribution of these two parameters in order to get the weight distribution (inset). The

figure illustrates the comparative study between the real world Gnutella networks [1]

and our theoretical model.

simulated from the snapshot is of 1, 31, 869 nodes. In order to verify whether the

degree distribution of Gnutella can be explained through the developed framework,

we theoretically compute the degree distribution of the emerging network (from sec-

tion 5.4) by taking the weights from the weight distribution of the inset of Fig. 5.5 [20].

During connection initiation, most of the servents initially connect to multiple online

peers [82], therefore we keep m = 2. The probability qkc(j) of joining of a node j

with cutoff degree kc(j) is adjusted accordingly to fit the calculated degree distri-

bution close to the Gnutella network. As can be seen from Fig. 5.5, our theoretical

model can mimic the degree distribution of Gnutella network with reasonable accu-

racy, however there are some deviations. Although the higher degree nodes match

almost exactly with theory, the amount of small degree nodes in Gnutella is less than

the theoretically calculated pk. The possible reason is, due to the finite size of the

web cache, the GWebCache is totally populated by the high degree nodes in the net-

work. Henceforth, the peers having low degree do not receive any connection from the

incoming node. Thus most of the low degree peer nodes remain with the low degree
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and subsequently the amount of low degree nodes in Gnutella network becomes lower

than theoretically calculated value. Next we address the finite size web cache issue

and modify the formalism accordingly.

5.5.1 Modifying the formalism with finite size WebCache

In order to model the finite size web cache, we assume that the nodes having degree

greater than m′(m′ < kc(min)) be always present in the web cache (with probability

1). However, the probability of getting a node in the webcache having degree k,

such that m ≤ k ≤ m′ is γ. We suitably modify the rate equations described in

Eqs. (5.4) and (5.7) to incorporate these assumptions. It is important to note that,

as m′ < kc(min), these changes may only affect the calculations of the part A of

section 5.4.

Similar to Eq. (5.3), the average number of m degree nodes in the webcache

acquiring links from the incoming node becomes

γ
mpm,n,wi

2mwi
βi

× Awi
m (5.26)

Hence modified rate equation for k = m

∆nm,wi
= fwi

− γ
mpm,n,wi

2mwi
βi

× Awi
m (5.27)

Similarly, the rate equation for m ≤ k ≤ m′

∆nm,wi
= γ

(
(k − 1)pk−1,n+1,wi

− kpk,n,wi

2mwi
βi

)
× Awi

m
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Hence the modified degree distribution becomes

pk =
max∑

i=min

pk,wi
fwi

(5.28)

=


∑max

i=min
1

(1+ γk
αi

)
fwi

k = m∑max
i=min

fwiγ
k−m

(1+ γm
αi

)
×
∏k−m

j=1

(
k−j

γ(k−j+1)+αi

)
m < k < m′∑max

i=min

fwiγ
k−m

(1+ γm
αi

)
×
∏k−m

j=1

(
k−j

k−j+1+αi

)
k = m′ + 1

Calculation of pk for the nodes having degree k > m′+1 remains same as sections 5.3

and 5.4. We plot the modified equations (Eq. (5.28)) in Fig 5.5 with γ = 0.37 and

m′ = 18 which fits the Gnutella snapshot almost perfectly.

5.6 Conclusion and design guidelines to the net-

work engineers

The work done in this chapter brings forward an important message that preferential

attachment may also result in a bimodal degree distribution which superpeer topolo-

gies exhibit. This happens when preferential attachment takes into consideration

three features simultaneously; the node weight (quantifies the amount of resource,

processing power, storage space etc.), current degree and the available bandwidth.

The developed formalism points to the fact that accurate computation of the degree

distribution of a network is possible (as shown in the Fig. 5.5 for Gnutella) based on

the bootstrapping protocol and the information about the nature of web cache.

The developed formalism and rigorous analysis lead to some suggestions which if used,

would result in minimal change in the present servent implementations, however may

lead to a quantum jump in performance. Specifically two areas of servent program -

bootstrapping protocol and GWebCache updation can be improved. (a) Bootstrap-

ping : The bootstrapping protocols can be properly modified to control the amount

of superpeers in the network. Section 5.4.1 shows that instead of joining the network

with different bandwidth levels, using a few (or single) cutoff degrees is optimal for the

emergence of high amount of superpeers in the network. In Gnutella, different nodes
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in the network join with their individual bandwidth (or cutoff degree) that varies

widely (dial up connection, ADSL, LAN). However, the bootstrapping protocol can

be properly designed to restrict the maximum degree of the individual nodes to a few

small number. This measure will result in the higher presence of superpeer nodes in

the network (Fig. 5.4(b)) and subsequently facilitate proper load balancing in the sys-

tem. (b) Updation of GWebCache : In addition to that, rigorous analysis of our

formalism leads to some suggestions to the network engineers regarding the updation

of GWebCache. Two important results have been reported (a) high weighted node

can increase the fraction of superpeers only upto a level (section 5.3.2) (b) presence

of too many high weighted nodes may be detrimental (section 5.3.2). GWebCache

is periodically populated by the online peers/superpeers nodes based on the specific

servent implementation [82]. Hence instead of blindly updating the GWebCache with

‘high weighted’ nodes, updation techniques which properly balance nodes’ weight and

degree can be undertaken.

In this chapter, we have focused on the formation of superpeer network only due

to the bootstrapping of joining nodes. However, in addition to the bootstrapping,

the frequent departure of the online peers and relinking of the existing connections

play a major role in the topology formation of the network. In the next chapter, we

include peer churn and rewiring of links in our formalism and analyze their effects

on the topology (like amount of superpeers, largest connected component, network

diameter etc) as well as on the various p2p services. The damage in the network

connectivity caused by peer churn and repairing activity initiated by the rewiring of

links is rigorously analyzed.



Chapter 6

Emergence of superpeer networks

in face of churn and link rewiring

6.1 Introduction

In Chapter 5, we have investigated the reason behind the emergence of superpeer

networks by modeling bootstrapping as a preferential attachment process. We have

made the simplified assumption that the network does not undergo any node churn or

rewiring, hence we only deal with the joining of incoming nodes through bootstrapping

protocols. But in reality, any p2p network is highly dynamic with nodes and links

continuously undergoing churn/reformation [160]. Hence any understanding, even

qualitative, of the topology remains grossly incomplete without considering these two

dynamics. In this chapter, we extend the formalism, developed in Chapter 5 to include

churn, rewiring along with bootstrapping [7]. In the last chapter, we have assumed

that the ‘goodness’ of a node is proportional to the node weight and current node

degree. And accordingly, we have performed a detailed study of the impact of node

weights on the accumulation of the superpeer nodes in the network. Since peer churn

and link rewiring is the primary focus of this chapter, to keep calculation simple, we

characterize the ‘goodness’ of a node only by its current degree. We have seen that

this assumption does not affect the generality of our formalism and if necessary, the

141
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‘weight’ parameter may be easily included in our framework.

The formalism developed in this chapter unfolds the bounds till which the qual-

itative nature of superpeers is preserved against churn. More importantly, it gives

concrete idea of many of the topological parameters like amount of superpeers, com-

ponent size, network diameter etc. As we have observed in Chapter 5, the quality of

service enjoyed by a particular peer is mainly determined by the nature of its neigh-

boring nodes, favorably towards superpeer nodes. Subsequently, the high amount of

superpeers in the network improves the overall QoS. Side by side, the impact of churn

and rewiring on the network connectivity may be indicated by the size of the largest

connected component in the network whereby one can understand the extent of com-

munication possible among peers. Similarly the network diameter directly affects the

search efficiency of the networks [130]. Analyzing the influence of peer churn and link

rewiring upon all these topological properties is the primary focus of this chapter.

The rest of the chapter is organized as follows. In section 6.3, we assume that rewiring

process is not present hence only consider that nodes join through bootstrapping and

leave the network through peer churn. We consider that all the peers join the network

with fixed cutoff degree. In this section, we take a special case to show the network

behavior without churn. These results become useful next, when we investigate the

impact of churn on the superpeer network. In section 6.4, we include the link rewiring

in our formalism and illustrate the effectivity of rewiring in absorbing the damage

caused by churn upon the network. In section 6.5, we generalize the theory for the

case where different peers join the network with individual/variable cutoff degrees.

Section 6.6 validates the predictive power of the theoretical framework through accu-

rate modeling of topological snapshot of Gnutella networks. The important findings

which may be useful to the network engineers for improving the p2p services is sum-

marized in section 6.7 after which we conclude the chapter. However, in order to

develop the analytical framework, we build simple models of bootstrapping, rewiring

and churn which is described next in section 6.2.
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6.2 Modeling bootstrapping and other node/link

dynamics

In this section, we model the three types node dynamics - bootstrapping, churn and

rewiring. The incoming nodes join the network through bootstrapping protocols

that is executed by different servent programs (limewire, gnucleus) [32, 82]. During

bootstrapping, peer servent selects some online nodes guided by the ‘good neighbor’

criteria [93]. In order to attain the above objective, peers try (prefer) to join to high

degree (bandwidth) nodes [62,104]. We model bootstrapping protocols through node

attachment rules where probability of attachment of the incoming peer to an online

node is proportional to the degree of the online node. We realistically assume that

bandwidth of a node is finite which restricts its maximum connectivity (cutoff degree).

A node j, after reaching its cutoff degree kc(j), rejects any further connection requests

from the incoming peers. Check Algorithm 6.1 for details.

Algorithm 6.1: Bootstrapping protocol executed by the joining node i

Node i preferentially chooses m′ (m′ > m) online nodes based on their current

degrees

while m online nodes are not connected with i do
j = select an online node among the chosen m′ nodes

Node i sends the connection request to j

if degree(j)< kc(j) then
Node i connects with node j

end

else
Node j rejects the connection request

end

end

Algorithm 6.2: Protocol executed by the departing node i

Node i sends disconnection message to all the neighboring nodes

On the other hand, a fraction of nodes leave the network randomly either gracefully
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(notifying their neighbors, Algorithm 6.2) or abruptly. In such case, periodical pinging

by online peers (peers which have not left the network) help themselves to keep

updated about the status of their neighbors (Algorithm 6.3). In order to prevent

Algorithm 6.3: Topology maintenance protocol, periodically executed by all the

online nodes in the network

foreach Node i in the network do
Send a ping message to all its neighbors and wait for the reply. If reply

message is not received from a neighbor j after a timeout period,

disconnect the link lij

end

Algorithm 6.4: Rewiring protocol executed by the online node i

Node i randomly selects a link lij connected with node j

Send a disconnection request to node j and disconnects the link lij

while Node i has not established a new connection with node j′ do
j′ = preferentially select an online node based upon the node degree

Node i sends the connection request to j′

if degree(j′) < kc(j
′) and lij′ does not exist then

Node i connects with node j′

end

else
Node j′ rejects the connection request

end

end

network breakdown and to maintain quality of service, rewiring of the links take

place by the online nodes at regular interval. They disconnect links from some of the

connected peers and reconnect them with some good online peers (Algorithm 6.4).

These three operations are now modeled with respect to a time step where at each

timestep t, each of the three operations are performed with some probability

• With probability q, a new node joins the network following Algorithm 6.1.
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• With probability r, a randomly selected node leaves the network due to peer

churn. Peers in the network get updated about this activity either through

Algorithm 6.2 or Algorithm 6.3.

• With probability w, a randomly chosen node in the network performs rewiring

of a link following protocol specified in Algorithm 6.4.

This is important to note that q + r + w is not necessarily 1. Since we deal with the

growing network, the only restriction remains is q > r.

The analytical framework is developed next. Without loss of generality, here we as-

sume that all the peers join the network with fixed cutoff degree kc (sections 6.3, 6.4).

However further in section 6.5, we generalize the formalism for the case where nodes

may join with variable cutoff degrees.

6.3 Development of growth model in face of peer

churn

In this section, we intend to compute degree distribution pk (the fraction of k degree

nodes in the networks) where nodes join the network through bootstrapping and leave

through peer churn. These values of pk can be computed by observing the shift in

the number of k degree nodes to k + 1 degree nodes as well as k − 1 degree nodes

to k degree nodes due to the attachment of a new node and removal of an existing

node at timestep t. Let the fraction of nodes in the network having degree k at some

timestep t be pk,t, then the total number of k degree nodes before addition or removal

of a node is npk,t (n is the total number of nodes at timestep t). After addition of the

node with probability q and removal of the node with probability r, the total number

of k degree nodes at timestep t + 1 becomes (n + q − r)pk,t+1. Hence, the change in

the number of k degree nodes between the timesteps t and t+ 1 becomes

∆nk = (n+ q − r)pk,t+1 − npk,t (6.1)



146 Chapter 6 Emergence of superpeer networks in face of churn and link rewiring

It is assumed that asymptotically pk,t+1 = pk,t = pk [11]. Hence the Eq. (6.1) becomes

∆nk = (q − r)pk (6.2)

We formulate rate equations depicting these changes for some arbitrary degree k.

By solving those rate equations, we calculate the degree distribution pk of the entire

network.

Joining of a node: In order to write rate equations [11], we need to know the

probability Ak that an online node of degree k will receive a new link from the

incoming peer. As stated in section 6.2, in this case the probability that an online

node will receive an incoming link is proportional to the current degree k. So the

probability that an online peer of degree k will receive a new link from the incoming

peer is given by

Ak =
kpk∑kc−1

k1=0 k1pk1
=
kpk
zf

, k < kc (6.3)

= 0, k ≥ kc

where

f =

(
1− kcpkc

z

)
(6.4)

is a parameter and
∑kc

k=0 kpk = z is the average degree of the network. Here the

denominator of Eq. (6.3) specifies the total number of edge tips (an edge has two

tips) in the network excluding the nodes that have reached their cutoff degree kc.

The addition of a new node of degree m at timestep t+1 changes the total number

of k degree nodes in the network. This change can be formulated in the rate equation

as the net change in the number of nodes of degree k in between timestep t and t+1.

The mean number of nodes of degree k that gain an edge when a single new node of

degree m joins the network at timestep t+ 1 is

δjok→(k+1) = m× Ak = m
kpk
zf

(6.5)

On the other hand, the number of k − 1 degree nodes that acquire a new edge each
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and become a node of degree k is

δjo(k−1)→(k) = m
(k − 1)pk−1

zf
(6.6)

Hence according to Eqs. (6.5) and (6.6), the net change in the number of k degree

nodes due to joining of a new node

δjok = δjo(k−1)→k − δjok→(k+1) = m

(
(k − 1)pk−1 − kpk

zf

)
(6.7)

Removal of a node: The removal of a node at timestep t+1 also changes the total

number of k degree nodes in the network. Removal of a node affects the number of k

degree nodes in three different ways; (a) removal of a k degree node itself (b) reduction

in the number of k degree nodes due to the removal of a node that is neighbor of

some k degree nodes: those nodes lose one link and move from degree k to k − 1 (c)

similarly increase in the number of k degree nodes due to removal of a node that is

neighbor of k + 1 degree nodes; a fraction of k + 1 degree nodes move to k degree

nodes.

Next we calculate the amount of decrease in the number of k degree nodes in the

network due to the removal of r fraction of nodes where probability of removal of a

k degree node is proportional to pk. The probability of landing at a k degree node

following a randomly chosen link can be designated as kpk
⟨k⟩ [127]. Subsequently, the

average number of links of an arbitrarily chosen j degree node which are connected

to the k degree nodes in the network can be expressed as kpk
⟨k⟩ × j. Hence, the average

number of links in the network that lands at the k degrees nodes can be expressed as

Arm
k =

kc∑
j=0

pjj ×
kpk
⟨k⟩

(6.8)

Removal of a fraction of nodes in the network results in the removal of the links

associated with them and subsequently the average number of k degree nodes that

loses one link and become a node of degree k − 1 is

δrmk→(k−1) =
kc∑
j=0

jpjkpk
⟨k⟩

= kpk (6.9)
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Similarly due to removal of a node, a fraction of nodes having degree k+1 lose a link

and move to the degree k. Hence according to Eq. (6.9), the change in the number

of k degree nodes due to node removal

δrmk = (−pk + δrm(k+1)→k − δrmk→(k−1)) (6.10)

= (−pk + (k + 1)pk+1 − kpk) = (k + 1)[pk+1 − pk] (6.11)

We now write the rate equations in order to formulate the change in the number of k

degree nodes in the network due to the attachment of a new node of degree m with a

probability q and removal of a node with probability r. Four pertinent degree ranges

k = 0, k = m, k ̸= 0,m, kc and k = kc are taken into consideration.

Rate equation for 0 < k < kc such that k ̸= m

According to the Eqs. (6.2), (6.7) and (6.10), the net change in the number of k degree

nodes at timestep t+ 1 can be expressed as

∆nk = qδjok + rδrmk (6.12)

Simplification of which results in

pk =
( qm(k−1)

zf
)pk−1 + (r(k + 1))pk+1

q + rk + qmk
zf

(6.13)

Rate equation for k = m

Beyond the normal increase in the m degree nodes by δjom and δrmm , the entrance of the

node itself with degree m adds an additional member in the m-degree node family.

Hence similar to Eq. (6.12), the change in the number of m degree nodes at timestep

t+ 1

∆nm = q
(
1 + δjom

)
+ rδrmm (6.14)

Subsequently,

pm =
q + ( qm(m−1)

zf
)pm−1 + (r(m+ 1))pm+1

q + rm+ qm2

zf

(6.15)
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Rate equation for k = kc

Since the network does not have any node of degree greater than kc and nodes having

degree kc are not allowed to take any incoming links, nodes are only accumulated at

degree k = kc. However, a fraction of kc degree nodes lose their links due to node

removal and move to degree kc − 1. Hence the rate equation

∆nkc = qδjo(kc−1)→kc
+ r(−pkc − δrmkc→(kc−1)) (6.16)

Consequently, the corresponding recurrence becomes

pkc =
( qm(kc−1)

zf
)pkc−1

q + rkc
(6.17)

Rate equation for k = 0

Nodes with degree k = 0 do not lose any link. However, nodes of degree 1 may lose

one link due to node removal and move to degree 0. Hence, the rate equation becomes

∆n0 = r(−p0 + δrm1→0) (6.18)

Subsequently, we find

p0 =
r

q
p1 (6.19)

The degree distribution pk of the emerging network can be calculated by recursively

solving the Eqs (6.13), (6.15), (6.17) and (6.19).

6.3.1 Special case: growth without peer churn

In this section, we consider a special case where the probability of peer churn becomes

zero, that is r = 0. This fixes the minimum degree of the network to be m. The

probability that an online peer of degree k will receive a new link from the incoming
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Figure 6.1: The degree distribution of the network emerged following the bootstrap-

ping protocol with fixed cutoff degree kc = 10 and m = 2 in face of peer churn r.

Note, two peaks appearing at k = 2 and k = 10 respectively, spike at k = 10 illus-

trates the emergence of superpeer nodes. The dashed lines show the theoretical and

the symbols show the simulation results. Inset shows the plot in log-log scale.

peer is given by

Ak =
kpk∑kc−1

k1=m k1pk1
k < kc (6.20)

= 0 k ≥ kc

Hence we get

Ak =
kpk∑kc−1

k1=m k1pk1
=

kpk
2m− kcpkc

=
kpk
2mf

(6.21)

where

f = (1− kcpkc
2m

) (6.22)

is a parameter and
∑kc

k=m kpk = 2m since there are m edges for each node added,

and each edge, being now undirected, contributes two ends to the degrees of network

nodes. Similar to the section 6.3, the rate equations are written for the following

three regions k = m, m < k < kc, k = kc. According to Eq. (6.5), the mean number

of nodes of degree k that gain an edge when a single new node of degree m joins the

network at timestep t + 1 is δjok→(k+1) = m × kpk
2mf

= kpk
2f

, independent of m. On the

other hand, δjo(k−1)→k = (k−1)pk−1

2f
number of nodes which were previously of degree

(k − 1), acquire a new edge and become node of degree k.

Calculation of pk for k = m
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The joining of the node with degree m adds an additional member in the m-degree

node family and removes on average mpm
2f

nodes due to transition from degree m to

m+ 1. Hence the net change in the number of nodes having degree k = m

(n+ 1)pm − npm = 1− 1

2f
mpm (6.23)

Hence

pm =
2f

2f +m
(6.24)

Calculation of pk for m < k < kc

The net change in the number of nodes having degree k for (m < k < kc) due to the

attachment of the new node

(n+ 1)pk,n+1 − npk,n =
1

2f
(k − 1)pk−1 −

1

2f
kpk (6.25)

Simplification of Eq. (6.25) results

pk =
(k − 1)

(k + 2f)
pk−1 (6.26)

=
(k − 1)(k − 2)....m

(k + 2f)(k + 2f − 1)....(m+ 1 + 2f)
pm (6.27)

Using (6.24), we get

pk =
(k − 1)(k − 2)...m

(k + 2f)(k + 2f − 1)...(m+ 1 + 2f)
× 2f

(2f +m)

=
B(k, 2f + 1)

B(2f + 1,m)
× 2f

2f +m
(6.28)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

is Legendre’s beta function, which goes asymptotically as a−b

for large a and fixed b, and hence

pk =
k−(2f+1)

(2f + 1)−m
× 2f

2f +m
(6.29)

Calculation of pk for k = kc

The nodes having degree kc are not allowed to accept connection from the incoming
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nodes. Hence,

(n+ 1)pk − npk =
1

2f
(k − 1)pk−1 (6.30)

which results

pk =
1

2f
(k − 1)pk−1 (6.31)

Similarly using Eqs. (6.28) and (6.31) we get the following expression for k = kc

pkc =
(kc − 1)(kc − 2)....m

(kc − 1 + 2f)(kc − 2 + 2f)....(m+ 1 + 2f)

1

(2f +m)
(6.32)

=
B(kc, 2f)

B(2f,m)
=

k−2f
c

(2f)−m
(6.33)

Using iterative substitution technique, we find the solution of f from the Eqs. (6.22)

and (6.32). From the solution of f , we calculate pk using Eqs. (6.24), (6.28), (6.32).

Fraction of superpeers in the network

Eq. (6.32) shows that the increase in the cutoff degree kc reduces the percentage of

superpeers in the network. This reduction of the amount of superpeers follows power

law behavior with exponent 2f .

Emergence of superpeer nodes

We are now in the position to theoretically understand the emergence of super-

peer nodes. A closer look at the above equations points to two important obser-

vations. First, the fraction of nodes having degree kc, pkc , is greater than pkc−1. From

Eq.( 6.31), we find
pkc
pkc−1

=
(kc − 1)

2f
> 1 (6.34)

Since 0 < f ≤ 1 and kc ≫ 1, the ratio kc−1
2f

> 1 subsequently pkc > pkc−1. The

bootstrapping model gives pk = 0 for k > kc. Hence, we conclude the presence of a

spike at degree kc.

Secondly, we find for m < k < kc, the probability continuously decreases. This can

be understood from Eq. (6.26)

pk
pk−1

=
(k − 1)

(k + 2f)
< 1 (6.35)

i.e. pk < pk−1. These two observations indicate the presence of two zones and direct

to the emergence of high degree superpeer nodes at degree kc. This is in line with
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the observations in previous section as well as in section 5.3.1 of Chapter 5.

6.3.2 Simulation results and inference derivation

We validate the theoretically obtained degree distribution by simulating the emer-

gence of the network. The stochastic simulation set up is as follows. At each step,

an incoming node gets connected to the network with probability q and some online

node randomly gets removed from the network with probability r. We consider two

different cases; in the first case, the removal probability r is set to 0. In second

case, removal of node (with r = 0.4) also takes place in addition to the joining of

nodes. In both cases, we fix the joining probability q at 1.0 which signifies that at

each timestep, one node joins the network irrespective of removal and rewiring. The

incoming node joins the networks with cutoff degree kc = 10 and gets connected with

two online nodes (m = 2) depending upon the current degree of that online nodes.

The total number of nodes in the system is considered to be 5000 and we perform

500 individual realizations and plot the average degree distribution. We calculate the

degree distribution for the typical case of r = 0 from section 6.3.1. Fig. 6.1 shows that

the agreement between the theoretical and simulation results is exact which validates

the correctness of the theoretical model. It is important to note the accumulation of

superpeer nodes at degree 10.

6.3.3 Impact of peer churn

In the following, we investigate the influence of peer churn on the various topological

properties of the emerging networks like largest component size, number of compo-

nents and network diameter. We show that churn reduces the amount of superpeers

in the networks and after a threshold value, churn destroys the bimodal structure of

the emerging network. Churn also has a significant role in the disintegration of the

largest component thus disrupting the communication among the peers.



154 Chapter 6 Emergence of superpeer networks in face of churn and link rewiring

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

Probabilitry of node removal (r)

F
ra

ct
io

n 
of

 s
up

er
pe

er
s 

p k c

m=2, k
c
=10

m=2, k
c
=20

0 0.5 1
0

0.01

0.02

0.03

 r
p k c

m=1, k
c
=10

m=2, k
c
=20

(a) Sharp fall in the amount

of superpeers (pkc) due to

churn r for various kc and m

(inset).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

10

probabilitty of node removal (r) 

p k c/p
k c−

1

k
c
=10

k
c
=20

0 2 4 6
0

0.5

1

m

p k c

r=0  
r=0.1
r=0.2
r=0.3

(b) The increase in kc im-

proves critical churn thresh-

old rc (by increasing
pkc

pkc−1

ratio). Inset shows that in-

crease in the joining degree

m increases the fraction of

superpeers pkc
.
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pkc

pkc−1
.

Impact on superpeer nodes

Fig. 6.1 shows that in the absence of peer churn, a spike appears at around degree

kc which means the accumulation of superpeer nodes in the network. However, from

the simulation results in Fig. 6.2(a), we find that the initial increase in r results in a

sharp decrease in pkc . This happens due to two reasons; a) The presence of relatively

high amount of superpeers leads to the initial spurt of their removal. b) random

removal of nodes results in the disappearance of the links landing at the high degree

superpeer nodes. The effect of these two dynamics reduces with the further increase

in r as then pkc is already low. The Eq. (6.17) shows that pkc mainly depends upon

the factor kc
z
≈ kc

m
which is supported by the inset of Fig 6.2(a). Here two networks

with identical kc
m

ratio (10, 1 & 20, 2) have almost same amount of pkc .

As node removal probability r gets higher than the threshold rc, the spike at k = kc

disappears. The exact expression for rc can be calculated as follows. The disappear-
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ance of spike at kc occurs when pkc ≤ pkc−1, hence from the Eq. (6.17) we find

rc ≥
q

kc

(
m(kc − 1)

zf
− 1

)
(6.36)

From the above expression, it becomes directly evident that increase in the cutoff

degree kc and joining degree m makes the spike at kc more robust. In support of this

fact, simulation results in Fig. 6.2(b) show that increase in kc improves the
pkc

pkc−1
ratio

and subsequently the critical churn threshold rc. Similarly, inset of Fig. 6.2(b) shows

that increase in m sharply increases pkc and at m = 5, almost all the nodes in the

network become superpeers. However, as the churn in the network increases, the pkc

decreases.

Impact on the network component and diameter

In Fig. 6.3, we analyze the effect of peer churn on the network component and the

diameter. The largest connected component in the network plays a major role in

the peer communication. For the sake of fairness, we define normalized number of

components (Nf ) and network diameter (Nd). Nf is derived by dividing the number

of components Nc with the network size N whereas Nd as the ratio of shortest path

length between two farthest nodes (d) and the expected diameter of the largest con-

nected component LC (i.e. d
ln(LC)

).

Initial network configuration: without churn

Fig. 6.3(a) shows that in the network without churn, there exists a single connected

component where high degree superpeer nodes primarily drive the connectivity for-

mation. The presence of a single connected component keeps the network diameter

low (Fig. 6.4). The networks with higher cutoff degree (say kc = 20) typically have

low diameter due to the presence of high degree superpeer nodes.

Impact of small churn

The initial churn (r = 0.1) removes significant number of superpeer nodes (due to

their considerable presence) which subsequently results in the reduction of the largest

component size (Fig. 6.3(a)) and increase in the number of components in the network

(Fig. 6.3(b)). As a result of churn, the amount of high degree superpeer nodes in the

network reduces and in effect connectivity among the nodes within the largest con-
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Figure 6.3: Fig. 6.3(a) and 6.3(b) show the impact of churn on the component for-

mation in the network.

nected component weakens. This phenomenon can be conceptualized as the creation

of ‘holes’ in the network as a result of churn.

Impact of heavy churn

r > 0.2 results in a sharp fall in the largest connected component size (Fig. 6.3(a))

and consequently the network gets disintegrated into a large number of small dis-

connected components (Fig. 6.3(b)). The dissolution of largest component happens

due to the sudden percolation of ‘holes’ in the networks as a result of the removal of

online nodes. It is interesting to note that the sudden percolation occurs independent

of network size/cutoff degree, it only depends on average degree. The disintegration

of the network increases the number of components in the network (Fig 6.3(b)) and

even increases Nf (inset of Fig 6.3(b)). At r > 0.5, the number of components in

the network decreases (Fig 6.3(b)) as many singleton components physically get re-

moved, subsequently deaccelerating the increasing slope of Nf (inset of Fig. 6.3(b)).

Impact of m

The largest connected component of the network where nodes join withm = 2 exhibits
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more stable behavior due to its high average degree (Inset of Fig. 6.3(a), Fig. 6.3(b)).

However, the basic elegant properties of the network (like small network diameter)

deteriorates. Fig. 6.4 shows that the network diameter increases for the largest stable

component against churn due to the breakdown of the short length paths. Counter to

this, we find a (slow) reduction in the diameter at m = 1 as the network itself begin

to break down.

Summarization: In this section, we have developed a growth framework to analyze

the emergence of superpeer networks against churn. We have observed that without

churn, the network exhibits bimodal degree distribution where superpeer nodes ap-

pear at degree kc as a spike and the amplitude of the spike reduces with kc. However,

further analysis have revealed that churn decreases the amount of superpeers in the

network and after a threshold value, churn destroys the bimodality in the degree dis-

tribution. The impact of churn on the largest connected component and diameter

depends upon the joining degree m. For instance, with m = 1, churn resulted in

a sharp fall in the largest connected component size and consequently the network

gets disintegrated into a large number of disconnected components. For m > 1,

the network has showed stable behavior in terms of largest component size, however

disappearance of shortest paths deteriorates the network diameter.
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6.4 Development of growth model in face of peer

churn and link rewiring

In this section, we include link rewiring in our growth model in addition to node

joining and node removal. During rewiring, the disconnection of the old link and

subsequent reconnection (Algorithm 6.4) do not change the total number of nodes

and links in the network, but it significantly changes the topological structure and

properties of the network. The assumption that all the nodes join the network with

some fixed cutoff degree kc is still valid here. We compute pk by observing the shift

in the number of k degree nodes to k + 1 degree nodes as well as k − 1 degree nodes

to k degree nodes due to the attachment of a new node, removal of an existing node

and rewiring of a link at time-step t. Similar to the previous case, asymptotically

∆nk = (q − r)pk (6.37)

The addition, removal of nodes and rewiring of links may change the number of k

degree nodes in the network in the following three ways.

Joining and removal of nodes: Similar to Eq. (6.7), the amount of increase in the

k degree nodes due to the joining of a node may be expressed as

δjok = m

(
(k − 1)pk−1 − kpk

zf

)
(6.38)

Similarly, according to Eq. (6.10) the amount of increase in the number of k degree

nodes due to node removal can be expressed as

δrmk = (−pk + (k + 1)pk+1 − kpk) = (k + 1)[pk+1 − pk] (6.39)

Rewiring of a link: Similar to addition and removal of a node, rewiring of a link also

changes the total number of k degree nodes in the network. Let a randomly chosen

node i be currently connected with the node j through a link lij. If the node i starts

the relinking process, then it disconnects its connection with node j, preferentially

chooses another node j′ and establishes the new connection with node j′ (if the node

has not reached to its cutoff degree). Hence the rewiring leads to change in the

number of node of degree k in two different ways; (a) link disconnection and (b) link
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reconnection.

(a) Due to the disconnection of the old link, a fraction of k + 1 degree node loses

one link and moves in to degree k and at the same time a fraction of k degree node

loses one link and moves to degree k − 1. We first calculate the fraction of k degree

nodes that loses one link and moves to degree k − 1. Probability of landing at one k

degree node following a randomly chosen link is kpk
z
. We know that selecting a link

connected to a randomly chosen node is equivalent to selecting a randomly chosen

link in the network. Hence, mean number of k degree nodes in the network that loses

one link due to the link disconnection and moves from degree k to k − 1

δdisk→(k−1) =
kpk
z

(6.40)

Hence the mean reduction in the k degree nodes due to the link disconnection process

δdisk = δdisk→(k−1) − δdis(k+1)→k =
kpk − (k + 1)pk+1

z
(6.41)

(b) On the other hand, the reconnection process of relinking also causes the change in

the number of nodes of degree k as a k degree node (selected preferentially) accepts

one new link (if its current degree is less than the cutoff degree kc) from the node

which initiates rewiring procedure. Similar to Eq. (6.5), the mean number of k degree

nodes that accept a new link and move from degree k to k + 1 becomes

δreconk→(k+1) =
kpk
zf

(6.42)

Hence the mean increase in the k degree nodes in the network due to preferential

reconnection to the nodes of degree k

δreconk = δrecon(k−1)→k − δreconk→k+1 =
(k − 1)pk−1 − kpk

zf

So the net increase in the number of k degree nodes in the network due to rewiring

can be expressed as

δrelinkk = (δreconk − δdisk ) (6.43)
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Figure 6.5: Fig. 6.5(a) validates the theoretical results with simulation. Fig. 6.5(b)

shows the impact of rewiring on the superpeer nodes.

We now write the rate equations in order to formulate the change in the number of

k degree nodes in the network due to the attachment of a new node of degree m

with a probability q, removal of a node with probability r and rewiring of links with

probability w. Four pertinent degree ranges k = 0, k = m, k ̸= 0,m, kc and k = kc

are taken into consideration.

Rate equation for 0 < k < kc such that k ̸= m

The change in the k degree nodes in the network due to the joining (with probability

q) or removal (with probability r) of nodes and rewiring of links (with probability w)

can be expressed as

∆nk = qδjok + rδrmk + wδrelinkk (6.44)

Subsequently the recurrence relation becomes

ψkpk =

(
qm(k − 1)

zf
+
w(k − 1)

zf

)
pk−1 +

(
r(k + 1) +

w(k + 1)

z

)
pk+1 (6.45)
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where

ψk = q(1 +
mk

zf
) +

wk

z
(1 +

1

f
) + rk (6.46)

Rate equation for k = m

Following similar argument, the number of nodes having degree m, increases by one

(the incoming node has degree m) in addition to the change in the m degree nodes

by δjom , δrmm and δrelinkm . Hence similar to Eq. (6.12), the change in the number of m

degree nodes in timestep n+ 1

∆nm = q(1 + δjom ) + rδrmm + wδrelinkm (6.47)

Therefore we find

ψmpm = q +

(
qm(m− 1)

zf
+
w(m− 1)

zf

)
pm−1 +

(
r(m+ 1) +

w(m+ 1)

z

)
pm+1(6.48)

where ψm = ψk at k = m.

Rate equation for k = kc

Since the nodes having degree kc are not allowed to take any incoming links, nodes

are only accumulated at degree k = kc. Hence

∆nkc = qδjo(kc−1)→kc
+ r(−pkc − δrmkc→(kc−1)) + w(δrecon(kc−1)→kc − δdiskc→(kc−1)) (6.49)

Therefore, the corresponding recurrence becomes

pkc =
( qm(kc−1)

zf
+ w(kc−1)

zf
)pkc−1

q + rkc +
wkc
z

(6.50)

Rate equation for k = 0

Nodes having degree k = 0 do not lose any link. Hence

∆n0 = r(−p0 + δrm1→0) + wδdis1→0 (6.51)

Subsequently

p0 =

(
r + w

z

)
q

p1 (6.52)
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We recursively use Eqs. (6.45), (6.48), (6.50) and (6.52) to compute the degree dis-

tribution pk of the emerging networks.

6.4.1 Simulation results and inference derivation

We validate the theoretically obtained degree distribution by simulating the emer-

gence of the network. During simulation, we assume that an incoming node gets

connected with probability q = 1 to the network (with kc = 10, m = 2), some ran-

dom node gets removed from the network (with probability r) and link is rewired

with probability w. We consider two different cases; in the first case, the removal

probability r is set to 0. In second case, removal of node (with r = 0.4) also takes

place in addition to the joining and rewiring of nodes. In both cases, we fix the

joining probability q at 1.0 which signifies that at each timestep, one node joins the

network irrespective of removal and rewiring. The total number of nodes in the sys-

tem is considered to be 5000 and we perform 500 individual realizations and plot

the average degree distribution. Fig. 6.5(a) shows that the agreement between the

theoretical and simulation results is exact which validates the correctness of the the-

oretical model (dashed lines show the theoretical results whereas symbols depict the

simulation results). Instead of having a single sharp degree (say 10) as in ‘no churn,

no rewiring’ scenario, the superpeer region tapers off a bit and are distributed within

a small value around the initial peak (say 8, 9, 10). From the Fig. 6.5(a), the impact

of rewiring on the superpeer nodes is not directly evident, Fig. 6.5(b) discusses that.

In Fig 6.5(b), we show the impact of churn and rewiring on nodes around the peak,

specifically we consider p8, p9 and p10. The nodes of degree 10 lose links from churn

and disconnection process of rewiring, hence its fraction reduces with w. However,

nodes with degree 8 and 9 get benefited from the reconnection process of rewiring

(due to their high degree) and p8 and p9 increases with w. In the inset, we show that

rewiring continuously increases the superpeer fraction, mainly contributed from the

nodes with degree 8 and 9. However, question remains whether rewiring is fully able

to absorb the effect of churn in terms of the amount of superpeers still present.
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Figure 6.6: The impact of churn and rewiring on the fraction of superpeers in the

network, largest component size and network diameter is shown.

Rewiring and amount of superpeers

In order to understand the impact of rewiring, we generate two networks A and B

and compare the amount of superpeers present in them. Churn is simulated while

generating network A, that is, at each step along with node joining (m = 2), there is

a finite probability (r) of node removal. On the other hand, network B is generated

only by the joining of incoming nodes so that the total number of nodes as well as

the average degree of B becomes same as A. Inset of Fig 6.6(a) shows that fraction

of superpeers in the network A (with churn) is always less than that of network

B (without churn) and the difference remains almost constant. Next we perform

rewiring on network A with probability w and subsequently record the change in

the superpeer fraction. In Fig. 6.6(a), we show the difference between the fraction of

superpeers in network B and the network A after rewiring. The results show that with

the increase in rewiring probability w, the difference in the superpeer fraction between

the networks A and B reduces, but it never reaches zero. Hence, we conclude that
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rewiring can absorb the effect of churn to some extent, however it fails to completely

nullify the effect of churn.

Impact on the component formation and diameter

In section 6.3, Fig 6.3 showed that peer churn reduces the size of largest connected

component and disintegrates the network into small components. Fig 6.6(b) shows

the utility of rewiring in healing the largest connected component from churn whereby

rewiring ensures that connectivity is maintained among the nodes of the network. In

Fig 6.6(b), we show the impact in the largest connected component size against churn

(r) for various rewiring probabilities (w).

Churn without rewiring: For w = 0, we observe a sharp fall in the largest con-

nected component size (Fig. 6.6(b)) as nodes leave the network and disintegrates the

network into smaller components. It is important to note that a few of these newly

created components (apart from the largest connected component) are of moderate

size, however rest of them are of very small size (mostly a singleton node).

Moderate rewiring gives benefit: In presence of proper rewiring, p2p network

shows graceful degradation in face of churn. For example, at r > 0.25, nodes of the

individual ‘moderate size’ components get connected by rewiring to form a larger con-

nected component (Fig 6.6(b)). Hence the rewiring phenomenon neutralizes the effect

of churn and saves the network from possible disintegration. However, the network

diameter increases considerably. This is because the rewiring of existing links forms

‘bridging links’ between the ‘moderate size’ components in the network and through

this, it merges the ‘moderate sized components’ into a larger connected component.

Fig 6.6(b) shows that the increase in the rewiring probability gradually reduces the

effect of churn on the largest component size and subsequently reduces the rate of

reduction of the largest component size.

Heavy rewiring is not cost effective, sometimes detrimental: Inset of Fig. 6.6(b)

indicates the existence of some crossover point such that if the churn rate is lower

than some threshold value (r = 0.073), the rewiring of links may be detrimental. In

this case, some of the existing nodes leave the largest connected component due to

the disconnection of the links, which reduces the component size. On the other hand,
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it is important to note that above that specific churn rate, rewiring becomes helpful

where rewiring integrates the disconnected components again through the reconnec-

tion procedure. However after some threshold level, the impact of rewiring saturates

and further increase in w does not improve the network connectivity.

6.5 Formalism for variable cutoff degrees with peer

churn and rewiring

Similar to section 5.4 of Chapter 5, we extend our formalism for the case, where nodes

may join the network with individual/variable cutoff degrees. We assume that the

probabilities that a node j joins the network with cutoff degree kc(j) is qkc(j). Let

every node necessarily have cutoff degree between a specified minimum and maximum,

kc(min) and kc(max) respectively. Similar to Eq. 6.3, the probability that an online

node of degree k receives a new link from the incoming peer or from another online

peer (due to rewiring)

Âk =
kpk∑kc(min)−1

k=0 kpk +
∑kc(max)

k=kc(min) kpkSk

=
kpk

(z −
∑kc(max)

k=kc(min) kpk(1− Sk))
=
kpk
zfg

(6.53)

where

fg = 1−
∑kc(max)

k=kc(min) kpk(1− Sk)

z
(6.54)

implies the fraction of nodes in the network capable of accepting new links from the

incoming peer and z =
∑kc

k=0 kpk is the average degree of the network. Here Sk is

the fraction of k degree nodes whose cutoff degree is greater than k and hence are

still capable of taking incoming connections. We calculate the exact expression for

Sk later in this section.

Similar to the fixed cutoff, we formulate the rate equations to characterize joining of

an incoming node of degree m. Based on the behavior of Sk, the formulation of rate

equation and subsequently the computation of degree distribution need to be done
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in two parts; nodes with degree 0 ≤ k < kc(min) in part A and nodes with degree

kc(min) ≤ k ≤ kc(max) in part B.

Part A : Dynamics analysis for 0 ≤ k < kc(min)

In this case, none of the nodes has reached its cutoff degree. Hence Sk trivially be-

comes 1 and the rate equations for 0 ≤ k < kc(min) are similar to the Eqs. (6.12), (6.14), (6.16)

and (6.18). Therefore, using these equations we calculate pk.

Part B : Dynamics analysis for kc(min) ≤ k ≤ kc(max)

An important difference between part B and part A is that, at each k (kc(min) ≤
k ≤ kc(max)), a fraction of nodes reach their cutoff degree and stop taking further

links from the incoming nodes. So the calculation of Sk becomes nontrivial and their

values play a major role in formulating the rate equations. We start our analysis with

the nodes having smallest cutoff degree k = kc(min).

Calculation for k = kc(min)

We defined earlier that Sk is the fraction of nodes having degree k = kc(min) that

have not reached their cutoff and still capable of taking incoming links. Hence similar

to Eq. (6.5), on average δ̂jok→(k+1) = m× kpk
zfg
Sk number of nodes can move from degree

kc(min) to kc(min) + 1 because of addition of a new node with probability q and

hence leave the kc(min) set. On the other hand, similar to Eq. (6.6), the mean num-

ber of nodes with degree k− 1 that accepts new link and moves to degree k becomes

δ̂jo(k−1)→k = m× (k−1)pk−1

zfg
. Hence in variable cutoff, the net change in the number of k

degree nodes due to node joining

δ̂jok = δ̂jo(k−1)→k − δ̂jok→(k+1)

= m

(
((k − 1)pk−1 − kpkSk)

zfg

)
(6.55)

The change in number of nodes having degree k due to the removal of a node can be

calculated from Eq. (6.10)

δ̂rmk = (−pk + (k + 1)pk+1 − kpk) (6.56)

In addition to that, the increase in the k degree nodes due to rewiring performed by a

randomly selected node can be calculated from Eq. (6.43). However, it is important

to note that the fraction of nodes of degree k that are able to accept new links due to

reconnection process of rewiring can be expressed as kpk
zfg
Sk. Hence, we appropriately
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change the reconnection expression of Eq. 6.43 as follows

δ̂reconk =

(
(k − 1)pk−1 − kpkSk

zfg

)
(6.57)

However, the mean reduction in the k degree nodes due to link disconnection process

δ̂disk remains same as Eq. (6.41). Subsequently the increase in the k degree node due

to rewiring process can be expressed as

δ̂relinkk = (δ̂reconk − δ̂disk ) (6.58)

=

(
(k − 1)pk−1 − kpkSk

zfg

)
−
(
kpk − (k + 1)pk+1

z

)
(6.59)

The net change in the number of nodes having degree k (for k = kc(min)) due to the

joining of a new node with probability q, removal of a node with probability r and

rewiring of a link with probability w becomes

∆nk = qδ̂jok + rδ̂rmk + wδ̂relinkk (6.60)

Calculation of Sk for k = kc(min)

The joining of an incoming node (with probability q) and reconnection process of

rewiring operation performed by the randomly chosen node (with probability w)

result in the gain of the new links for some of the nodes in the networks. The mean

number of nodes of degree (k − 1) that acquire the new links and move from degree

k − 1 to degree k due to joining and rewiring can be expressed as

qδ̂jo(k−1)→k + wδ̂recon(k−1)→k = (qm+ w)
(k − 1)pk−1

zfg
(6.61)

Since qk is the probability that a node joins the network with cutoff degree k =

kc(min), the number of nodes that move from degree k − 1 to k and also reach their

cutoff degree k = kc(min) becomes

δ̂
kc(min)
(k−1)→k = (qδ̂jo(k−1)→k + wδ̂recon(k−1)→k)×

qk∑kc(max)
k′=k qk′

(6.62)
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The removal of node (with probability r) and disconnection process of rewiring (with

probability w) results the movement of a fraction of k+1 degree nodes to k = kc(min)

degree nodes. However, all these nodes have cutoff degree greater than kc(min), hence

do not contribute in Eq. (6.62). As the fraction of k degree nodes in the network is

pk, then the fraction of nodes reaching the cutoff degree k after a particular timestep

can be normalized as

1− Sk =

(qm+w)(k−1)pk−1

zfg
q∗k

pk
⇒ Sk = 1− (qm+ w)(k − 1)pk−1q

∗
k

zfgpk
(6.63)

where q∗k = qk∑kc(max)

k′=k
qk′

. Substituting the value of Sk in Eq. (6.60) and rearranging pk,

we get

ψ̂kpk = (qm+ w)
(k − 1)

zfg

(
1 +

k(qm+ w)q∗k
zfg

)
pk−1

+

(
r(k + 1) +

w(k + 1)

z

)
pk+1 (6.64)

where

ψ̂k = (q +
qmk

zfg
+ rk +

wk

zfg
+
wk

z
) (6.65)

Calculation for k = kc(min) + 1

This case differs from the previous (k = kc(min)) in one aspect - unlike previous case,

only Skc(min) (i.e. Sk−1) fraction of (k − 1) degree nodes can accept incoming links

(due to joining of the new node and rewiring operation performed by the existing

node) and change their degree to k. However, similar to k = kc(min), Sk fraction

of k degree nodes accept the new link and move to degree k + 1. Hence, similar to

Eqs. (6.55) and (6.59), the increase in the k degree nodes due to node joining and

link rewiring can be expressed as

δ̂jok =

(
((k − 1)pk−1Sk−1 − kpkSk)

zfg

)
(6.66)

and

δ̂relinkk =

(
((k − 1)pk−1Sk−1 − kpkSk)

zfg

)
−
(
kpk − (k + 1)pk+1

z

)
(6.67)
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respectively. Subsequently following Eq. (6.60), we write the rate equation to compute

the net change in the number of nodes having degree k due to the joining of a new

node with probability q, removal a node with probability r and rewiring of a link with

probability w.

Calculation of Sk for k = kc(min) + 1

Similar to k = kc(min), the mean number of (k − 1) degree nodes that acquire the

new links and move from the degree (k − 1) to degree k is

qδ̂jo(k−1)→k + wδ̂recon(k−1)→k = (qm+ w)
(k − 1)pk−1

zfg
Sk−1 (6.68)

Since qk is the probability that a node joins the network with cutoff degree k =

kc(min)+1, the number of nodes that reaches the cutoff degree k = kc(min)+1 after

acquiring the new link may be expressed as

δ̂
kc(min)+1
(k−1)→k = (qδ̂jo(k−1)→k + wδ̂recon(k−1)→k)× q∗k (6.69)

With proper normalization, we find that the fraction of nodes that have not reached

their cutoff degree k = kc(min) + 1 and capable of taking incoming link

Sk=kc(min)+1 = 1−
(qm+ w) (k−1)pk−1

zfg
Sk−1q

∗
k

pk
(6.70)

Substituting the values of Sk, Sk−1 in Eqs. (6.67), (6.66) and following Eq. (6.60), we

get

ψ̂kpk = (qm+ w)
(k − 1)

zfg

(
1 +

k(qm+ w)q∗k
zfg

)(
pk−1 −

(qm+ w)(k − 2)q∗k−1

zfg
pk−2

)
+
(
(k + 1)(r +

w

z
)
)
pk+1 (6.71)

Generalization : Continuing the calculations for kc(min) < k ≤ kc(max), we obtain

the generalized equation

ψ̂kpk = X(k − 1)(1 +Xkq∗)

pk−1 +

k−kc(min)∑
j=1

(−X)j
j∏

t=1

(k − t− 1)q∗k−tpk−t−1


+
(
(k + 1)(r +

w

z
)
)
pk+1 (6.72)
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Figure 6.7: The degree distribution of the emerging network with and without peer

churn (r) and rewiring (w) for variable cutoff degrees (Inset shows in log-log scale).

Fig 6.7(b) shows the change in diameter where nodes joins with two cutoff degrees

10 and 20. The churn rate and rewiring probability are set to r = 0.5 and w = 0

respectively.

where

X =
qm+ w

zfg
(6.73)

is a parameter which depends upon the node joining and link rewiring probability. The

degree distribution of the network pk can be calculated following Eqs (6.13), (6.15), (6.17)

and (6.19) for k < kc(min), Eq. (6.64) for k = kc(min) and finally Eq. (6.72) for

kc(max) ≥ k > kc(min).

Simulation results and inference derivation

In order to validate our theoretical framework, we simulate the bootstrapping proto-

col where nodes join with variable cutoff degrees. In our simulation, nodes can have

2 different cutoff degrees 10 and 20. We assume that the 30% of nodes join (say)

through dial up lines with cutoff degrees 10. Rest 70% of nodes join (say) through



6.6 Case study with Gnutella network 171

ISDN connection with cutoff degree 20. At the time of joining, each node establishes

connections with 2 online nodes in the network i.e. m = 2. Similar to the previous

cases, an incoming node gets connected with probability q to the network, a random

node may get removed from the network with probability r and link is rewired with

probability w. We consider two different cases; in the first case, the removal proba-

bility r and rewiring probability w is set to 0. In second case, removal of node (with

r = 0.2) and rewiring of links (with w = 0.4) also takes place in addition to the join-

ing of nodes. In both cases, we fix the joining probability q at 1.0 which signifies that

at each timestep, one node joins the network irrespective of removal and rewiring.

The total number of nodes in the system is 5000 and we perform 500 realizations.

Fig 6.7(a) shows that the agreement between the theoretical model and simulation is

exact.

Impact of cutoff degrees and their proportion: We investigate the impact

of cutoff degrees and their individual fractions on the network topology. First we

focus on the largest component size and next on the diameter. Fig. 6.3(a) shows that

the change in the cutoff degree do not significantly change the behavior of largest

connected component in the network. Hence we conclude that cutoff degrees and

their individual fraction does not have much impact on component size. However,

Fig 6.4 indicates that high cutoff degree kc reduces the network diameter. In order to

understand the role of individual cutoff fraction qkc , we perform a simulation where

q20 fraction of nodes join with cutoff degree 20, and rest of the nodes join with cutoff

degree 10. We set the churn rate to r = 0.5 and assume that rewiring is absent. In

Fig 6.7(b), we show that for some given churn (r = 0.5) and rewiring probability

(w = 0), the increase in the fraction of joining nodes with cutoff degree 20 reduces

the network diameter. The high degree nodes (k > 10) in the network play a crucial

role in reducing the network diameter.

6.6 Case study with Gnutella network

In order to illustrate the predictive power of the theoretical model, we chose to in-

vestigate the topological snapshot of Gnutella networks. As explained in Chapter 3,
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Gnutella networks [1] and our theoretical model. The inset shows the cutoff de-

gree distribution qkc(j) that provides excellent fit of our calculated degree distribution

with the real network data.

we simulate Gnutella network following the snapshot obtained from the Multimedia

& Internetworking Research Group, University of Oregon, USA [1](Fig. 6.8). In or-

der to check whether the degree distribution of Gnutella can be explained through

the developed framework, we theoretically compute the degree distribution of the

emerging network. Since during connection initiation, most of the servents initially

connect to multiple online peers [82], therefore we keep m = 2. The Gnutella network

consistently grows as a net effect of the joining of the new nodes and peer churn.

The rewiring of existing links also changes the topological structure of the networks.

We describe the evolution of Gnutella network due to joining, removal of nodes and

rewiring of links by the tuple (q, r, w). We keep q = 1 to signify that at each timestep,

one new node joins the network. To obtain r and w, we fit the calculated degree dis-

tribution with Gnutella snapshot, obtaining an excellent overlap for r = 0.474 and

w = 0.249. Similarly, the probability qkc(j) that a node j joins with cutoff degree kc(j)

is adjusted accordingly to fit the calculated degree distribution close to the Gnutella

network (inset of Fig. 6.8). As can be seen from Fig. 6.8, our theoretical model can

mimic the degree distribution of Gnutella network with reasonable accuracy. The

results indicate that on average 47.4% of nodes in Gnutella leave the network due to

peer churn. However, the network survives due to the significant amount of rewiring

(24.9%) performed by the online nodes. This theoretical result is reinforced by the

measurement study of [163] on the dynamics of Gnutella networks which also reports
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heavy churn.

6.7 Conclusion

In this chapter, we have extended the analytical framework developed in Chapter 5

to explain the evolution of superpeer networks in face of peer churn and link rewiring.

Our results have shown that a small churn results in a sharp reduction in the super-

peer fraction and after a threshold amount of churn, the bimodality of the degree

distribution disappears. In addition to that, churn also results in a sharp fall in the

largest connected component size and consequently the network gets disintegrated

into a large number of disconnected components. Interestingly, the breakdown syn-

drome seems to be independent of the topological properties of the network. The

servent program may be suitably designed to heal the network and maintain the QoS

by performing proper rewiring operation. Rewiring helps in absorbing some of the

damages caused by churn, however one should not do it too early nor overdo it; both

may be detrimental. But expectation about the impact of rewiring should be reason-

able as rewiring does not fully heal the damage created by churn. The best part of our

framework lies in the excellent match it produces with respect to Gnutella network’s

degree distribution. We feel that this complete comprehensive framework will be used

by design engineers to understand the impact of various parameters and accordingly

design better, more robust and efficient peer-to-peer networks in the future.

This brings to the end of the contributory chapters. We summarize our contribu-

tions and conclude the thesis in the next chapter.





Chapter 7

Conclusion and Future work

In this chapter, we summarize the main contributions of the thesis and take a stock

of our achievements vis–a–vis the objectives set up in the introduction of the thesis.

We find that the objectives have been largely achieved. We also realize various short-

comings of our work and identify unfinished agenda which we put forward as future

work.

7.1 Summary of our contributions

In this thesis, our contributions are two-fold (a) Building up comprehensive theo-

retical frameworks characterizing the stability and emergence of superpeer networks,

and (b) Reporting nonintuitive observations which arise from the interplay of the

underlying parameters. We can thus broadly categorize the contributions in terms of

(a) developing models and (b) carrying out extensive analysis and drawing inferences

upon the developed models.
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7.1.1 Stability analysis

Modeling: We have proposed an analytical framework that can predict the extent

of connectivity preserved among the nodes in face of churn and attacks (Chapters 3

and 4). We have modeled peer churn and attacks as the removal of nodes from the

network. Peer churn is characterized by degree independent and degree dependent

failures and attacks by deterministic and degree dependent attacks. We have shown

that our framework is capable of predicting the degree distribution of the deformed

topology after attack and also can take the degree-degree correlation present in the

network under consideration. The validation of the theoretical results is done both

by simulating random graphs and using real world Gnutella network.

Analysis: Rigorous analysis reveals the following interesting observations

1. Superpeer networks exhibit stable behavior against user churn, which is consis-

tent with the various measurement studies [69,146].

2. In deterministic attack, networks having low peer degree are very much vulner-

able and removal of only a small fraction of superpeers causes the breakdown

of the network. But as the peer degree increases, the stability of the network

increases as well.

3. In degree dependent attack fk ∼ k−γ, we have formulated a critical condition

whose solution set provides the critical exponent γ = γc. The peers and super-

peers required to be removed is dependent upon this critical exponent γc.

4. We have shown that, at some typical γc, degree dependent attack reduces to

deterministic attack. Subsequently, any kind of node removal technique can be

expressed as the degree dependent attack.

5. We have further analyzed the degree dependent attack and found that available

information about the network topology makes the attack efficient by reducing

the percolation threshold. However, beyond a threshold limit, this information

does not help the attackers in a significant manner.

6. The simulations on the small sized network has also shown that classical theory
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overestimates the percolation threshold, however, our equation provides a better

approximation.

7.1.2 Network emergence

Modeling: We have investigated the reason behind the emergence of superpeer

networks, where in the networks, incoming nodes join through servents, randomly

leaves the network due to churn and restructure their neighborhood through rewiring

of links. First, in Chapter 5, we have considered the emergence of the network only

through node joining, further we included peer churn and link rewiring in our for-

malism in Chapter 6. In Chapter 5, we have modeled the bootstrapping protocol

through node attachment rule where the probability of joining of an incoming peer to

an online node is proportional to the resources like processing power, storage space

etc as well as current degree of the online node. We have shown that the interplay

of finiteness of bandwidth with node resource play a key role in the emergence of

bimodal superpeer network. In Chapter 6, we have developed a more generalized

growth framework where nodes may undergo various kinds of dynamics like boot-

strapping, peer churn, link rewiring etc. In order to keep the calculation simple, in

Chapter 6, we have characterized the ‘goodness’ of a node only by its current degree.

The degree distribution of the emerging network calculated through the generalized

growth framework has exhibited nice agreement with simulation results as well as real

Gnutella snapshot.

Analysis: Rigorous analysis of the growth framework leads to some interesting

observations

1. Increase in the resourceful nodes may increase the fraction of superpeers only

upto a level, however presence of too many high resource nodes may be detri-

mental.

2. GWebCache is periodically populated by the online peers/superpeers nodes

based on the specific servent implementation. Carefully modifying the boot-

strapping protocol to sieve appropriate nodes from the GWebCache may im-
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prove the p2p services by reducing search latency and enhancing the speed of

file download etc.

3. Instead of joining the network with different bandwidth levels, using a few (or

single) cutoff degrees is optimal for the emergence of high amount of superpeers

in the network.

4. Small churn results in a sharp reduction in the superpeer fraction and after a

threshold amount of churn, the bimodality of the degree distribution disappears.

5. Churn may deteriorate the performance by disintegrating the network in com-

ponents. However, in presence of proper rewiring, superpeer network shows

graceful degradation in face of churn; the nodes largely remain connected, but

the diameter of the network increases. Rewiring acts as the ‘bridging links’

between the ‘moderate size’ components in the network.

6. If the churn rate is lower than some threshold, rewiring itself may be detrimental

as disconnection of links removes smaller components from the network. On the

other extreme, beyond a threshold level, the impact of rewiring saturates and

further increase does not improve the network connectivity.

7. Finally, the comparative study of our growth framework with the real world

Gnutella network has provided some estimation of the nature of the nodes of

the network, the churn and rewiring rate etc.

7.2 Future directions

In this final section, we discuss few of the many possible directions that have been

opened up by this thesis.

1. We have modeled churn as the removal of nodes (either randomly or based upon

degree) along with the adjacent links. This churn model may be extended if

we include the ‘lifetime’ or ‘session time’ of a peer in consideration. This will
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make the churn analysis more sophisticated and unfold the impact of different

factors on the network stability.

2. In Chapter 4, we have proposed a basic framework for calculating p′k in corre-

lated networks. This framework may be extended further to derive the critical

condition as well as to calculate percolation threshold in correlated network.

There are many interesting questions that need to be addressed for correlated

network. For instance, (a) do all the networks of a given correlation coefficient

exhibit same amount of stability? In that line, one may come up with a unified

metric which may capture both degree correlation and stability in a single pa-

rameter. (b) We have shown that attack in correlated network may change the

density (average degree) of the network. This may lead to some attack (node

removal) strategies altering with the network density and subsequently affecting

QoS.

3. In network emergence, we have modeled the joining of incoming nodes as the

GWebCache based bootstrapping protocols. However, there are several other

bootstrapping strategies like random address probing, locality aware bootstrap-

ping etc that need to be investigated and modeled.

4. In Chapter 6, we have assumed that during churn, a node leaves the network

along with its adjacent links. However, in some cases, churn of a node leads

to the formation of new links across the neighboring peers to keep their degree

constant. Modeling this churn dependent rewiring mechanisms in a growing

network may be the future work.

5. In this thesis, we have used the snapshot of Gnutella network of September

2004 to validate our frameworks. This surely act as a first proof of concept.

However, several recent topological snapshots of other popular p2p networks

like edonkey, KaZaA, skype etc should also be used.

6. In Chapters 5 and 6, we have developed a formalism to explain the emergence

of bimodal superpeer network due to joining, leaving of nodes and restructuring

of links in the context of superpeer network. This formalism may be further

used to analyze the growth of other social networks exhibiting similar kind of

dynamics.
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